Index

Note: Page numbers followed by \(f \) and \(t \) indicate figures and tables, respectively.

A
Abbreviated Profile of Hearing Aid Benefit (APHAB), 76, 93
ABR. See auditory brainstem response (ABR)
acoustic neuroma
 audiometric criteria for, 25
 stacked ABR findings with, 39–40, 39\(f \)
acoustic reflex, 27
acoustic reflex decay
 definition, 29
 negative, 29, 30\(f \)
 positive, 29, 30\(f \)
 testing, 29
 equipment, calibration, 12, 14\(f \)
acoustic reflex threshold (ART)
 clinical significance, 27–28, 28\(f \)
 definition, 27
 interpretation, 28, 29\(t \)
 measurement, 28, 28\(f \), 29\(f \)
 testing, equipment, calibration, 12, 14\(f \)
adaptation test, 50, 51\(f \)
AEP. See auditory evoked potential(s) (AEP)
air-bone gap, 18, 23
air-conduction (AC) testing, 14–16, 15\(f \), 23
 interaural attenuation for, 17, 17\(f \)
 masking for, 17, 17\(f \)
 thresholds obtained via, 16
alarm clock(s), amplified/vibrating, 94, 94\(f \)
alerting systems, 93, 94
Alexander’s law, 54
American National Standards Institute (ANSI), standards for audiometric calibration, 12
for hearing aids, 86–88
for maximum permissible ambient noise levels (MPANLs), 14, 15\(t \)
amplitude scaling, on motor control test, 48–49, 49\(f \)
ANSI. See American National Standards Institute (ANSI)
APHAB. See Abbreviated Profile of Hearing Aid Benefit (APHAB)
aphysiologic pattern
 on motor control test, 49, 50\(f \)
 on sensory organization test, 45\(f \), 46–47, 47\(f \)
ART. See acoustic reflex threshold (ART)
audiogram(s), 16
 interpretation, 21
 symbols used in, 16, 16\(f \)
audiometer(s), calibration, 12, 13\(f \)
audiometric equipment, calibration, 12, 13\(f \), 14\(f \)
audiometric symbols, 16, 16\(f \)
audiometric testing, maximum allowable noise level for, 14, 15
auditory brainstem response (ABR), 35
clinical applications, 37
interpretation, normal values in, 37
neurodiagnostic, 37–38
otoneurologic, 37–38
pathology-related patterns, 38–39
stacked, 39–40, 39f
testing, 36–39
abnormal results, 38f
normal results, 38f
threshold, 37
waveform, 36
auditory evoked potential(s) (AEP) interpretation, 34
testing, 34
azimuth, 2–3, 3f

B
background noise, and speech recognition, 9
Baha. See hearing aid(s), bone-anchored (Baha)
benign paroxysmal positional vertigo (BPPV), 56–57, 56f
characteristics, by affected canal, 56–57, 57t
binaural hearing, advantages, 9–11
binaural squelch, 11, 83
binaural summation, 9–10, 10f, 83
Bing test, 31, 32t
bone-conduction (BC) testing, 14–16, 15f, 23
interaural attenuation for, 18
masking for, 17f, 18, 18f
thresholds obtained via, 16
bone vibrator, 31
BPPV. See benign paroxysmal positional vertigo (BPPV)
BTE hearing aids. See hearing aid(s), behind-the-ear (BTE)

C
calibration, audiometric, 12, 13f, 14f
requirements for, 12
standards for, 12
caloric testing
abnormal results on, 57–59
methods, 57–59
canalithiasis, 57
Carhart's notched, 21
CDP. See computerized dynamic posturography (CDP)
center of gravity (COG) alignment, 44f, 47
center of gravity (COG) scores, 47–48
CHAMP, 40, 40f
Characteristics of Amplification Tool (COAT), 76
CHL. See conductive hearing loss (CHL)
CIC hearing aids. See hearing aid(s), completely-in-the-canal (CIC)
Client-Oriented Scale of Improvement (COSI), 76, 93
COAT. See Characteristics of Amplification Tool (COAT)
ocochlear hearing loss, recruitment and, 5
cochlear hydrops analysis masking procedure. See CHAMP
cochlear pathology, ABR pattern with, 38
cocktail party effect, 11
COG. See center of gravity (COG)
computerized dynamic posturography (CDP), 42
clinical applications, 51
limitations, 52
conductive hearing loss (CHL), 21
ABR pattern with, 38
audiogram for, 23, 24f
consonant(s), frequency spectrum of, 8
and speech recognition, 8, 8f
COSI. See Client-Oriented Scale of Improvement (COSI)

COWS acronym, 58

CROS. See hearing aid(s), CROS system

cupulolithiasis, 57

cVEMP. See vestibular evoked myogenic potential (VEMP) test, from sternocleidomastoid muscle

D

dB. See decibel(s) (dB)

dB HL. See decibels in hearing level (dB HL)

dB IL. See decibels intensity level (dB IL)

dB SPL. See decibels in sound pressure level (dB SPL)

decibel(s) (dB), definition, 1

decibels in hearing level (dB HL)

definition, 1
equivalent dB SPL, 1, 1f, 12
reference level for, 1, 1f
with speech awareness threshold, 2
with speech recognition threshold, 2
decibels in sound pressure level (dB SPL)

auditory threshold for, at audiometric frequencies, 1, 1f
definition, 1
equivalent to 0 dB HL, 1, 1f, 12
reference level for, 1
vs. dB IL, 1–2, 2t

decibels intensity level (dB IL)

definition, 1
reference level for, 1
vs. dB SPL, 1–2, 2t
detection. See also speech awareness threshold (SAT)
definition, 2
difference limen (DL), 9, 10f
directional microphone(s), 80–82, 81f
polar patterns, 81, 81f
directional preponderance, of nystagmus response from caloric stimulation, 59
discrimination. See also word recognition score (WRS)
definition, 2
distortion product (DP) gram, 33, 34f
distortion product otoacoustic emissions (DPOAE), 32interpretation, 33
measurement, 33
Dix–Hallpike maneuver, 55–56, 56f
DPOAE. See distortion product otoacoustic emissions (DPOAE)

DR. See dynamic range (DR)
DSL v5.0 prescriptive method for hearing aid(s), 89

DSVV. See dynamic subjective visual vertical (DSVV) test
dynamic range (DR), 6, 6f
dynamic subjective visual vertical (DSVV) test, 64–67, 65f

E

ear canal volume (ECV)
abnormal, 26, 27f
definition, 26
normal values, 26, 26f
earmold(s), 85, 85f

ECochG. See electrocochleography (ECOG, ECochG)

ECOG. See electrocochleography (ECOG, ECochG)

ECV. See ear canal volume (ECV)
electrocochleography (ECOG, ECochG), 34–35, 35f, 36f

EQ. See equilibrium score (EQ)
equilibrium score (EQ), 43–45, 44f
composite, 45
eye movement(s). See nystagmus; pursuit abnormalities; saccades

F feedback
definition, 82
in hearing aids, management, 82–83
feedback cancellation systems, 83
fixate suppress
and nystagmus response from caloric stimulation, 59
and vestibulo-ocular reflex (VOR), 63
FM system, personal, 93
f_{o}. See fundamental frequency (f_{o})
frequency. See also fundamental frequency (f_{o})
definition, 7
just noticeable difference for, 9, 10f
fundamental frequency (f_{o}), 7, 7f

G
gaze nystagmus test, 55

H
HAE. See hearing aid evaluation (HAE)
HAF. See hearing aid fitting (HAF)
harmonics, 7, 7f
HAT. See hearing assistance technology (HAT)
head shadow effect, 3
headshake nystagmus, 55
hearing aid(s)
amplifier for, 80, 80f
ANSI standards for, 86–88
S3.22–2003, 86, 88, 88f
S3.42–1992, 86–88, 87f
basic sound processing in, 80, 80f
behind-the-ear (BTE), 78–79, 78f
earmold styles for, 85, 85f
open-fit, 78f, 79, 79f
tubing for, 85
and bilateral amplification, 83
bone-anchored (Baha), 84–85, 84f
candidacy for
determination, otologist/physician and, 75
evaluation for, 75
completely-in-the-canal (CIC), 78, 78f
coupler measurements, 86–88
CROS system, 84–85, 84f
traditional wireless, 84, 84f
transcranial, 84
directional mode, 81–82
DSL v5.0 prescriptive method for, 89
electroacoustic assessment, 86, 87f
feedback, management, 82–83
frequency channels, 82
in-the-canal (ITC), 78, 78f
in-the-ear (ITE), 78, 78f
and medical clearance for amplification, 75
microphone for, 80, 80f. See also directional microphone(s)
and monaural amplification, 83
NAL-NL1 prescriptive method for, 89–90, 89f, 90f
and noise reduction, 82
omnidirectional mode, 81–82
prescriptive targets for, 89–90
real ear measurements (REMs)
for, 89, 89f–92f, 90–92
receiver for, 80, 80f
styles, 78–79, 78f
TransEar, 84–85, 84f
for unilateral hearing loss, 84–85, 84f
validation, 93
venting, 85–86, 86f
verification, 93
hearing aid evaluation (HAE), 75–76
hearing aid fitting (HAF), 75, 76
verification, 76, 93
hearing assistance technology (HAT), 93–94, 94f
hearing loss
asymmetrical, 30
conductive. See conductive hearing loss (CHL)
configuration, 21, 22f
flat, 21, 22f
fragmentary (corner), 21, 22f
high-frequency, 21, 22f
inverted trough, 21, 22f
notched, 21, 22f
precipitous, 21, 22f
rising, 21, 22f
sloping, 21, 22f
gradual, 21
precipitous, 21
sharp, 21
trough, 21, 22f
functional, differential diagnosis, 30
magnitude, 21, 21t
mixed, 21, 23
audiogram for, 23, 24f
noise-induced, 21, 23
sensorineural. See sensorineural hearing loss (SNHL)
type, 21
unilateral, 30
hearing aid options for, 84–85, 84f
and vestibular evoked myogenic potential (VEMP) test, 69
hertz (Hz), 7
Hz. See hertz (Hz)
for air-conduction (AC) testing, 17, 17f
for bone-conduction (BC) testing, 18
interaural level difference (ILD), 3, 4f
interaural spectral differences, 3
interaural time difference (ITD), 4, 4f, 5f
ITC hearing aids. See hearing aid(s), in-the-canal (ITC)
ITD. See interaural time difference (ITD)
ITE hearing aids. See hearing aid(s), in-the-ear (ITE)
J
jnd. See just noticeable difference (jnd)
Jongkee’s formula, 58
just noticeable difference (jnd)
definition, 9
for frequencies, 9, 10f
for intensity, 9, 10f
L
latency, on motor control test, 48–49, 49f
LDLs. See loudness discomfort levels (LDLs)
LGOB. See Loudness Growth in Octave Bands (LGOB)
loudness
rapid growth of, 5
recruitment, 5–6, 5f
loudness discomfort levels (LDLs), 92
definition, 76
measurement, 76–78, 77f
Loudness Growth in Octave Bands (LGOB), 5–6, 5f
loudness scale, 77, 77f
M
MAA. See minimum audible angle (MAA)
malingering, differential diagnosis, 30
masking. See also CHAMP
for air-conduction (AC) testing, 17, 17f
backward, 9
for bone-conduction (BC) testing, 17f, 18, 18f
definition, 9
downward spread of, 9
for non-test ear, 17, 17f
for speech audiometry, 17
for speech recognition threshold, 20
upward spread of, 9
for word recognition testing, 20
maximum compliance
abnormal, 26–27, 27f
definition, 26
normal values, 26, 26t
maximum permissible ambient noise levels (MPANLs), for audiometric testing, 14, 15t
medical clearance for amplification, 75
Meniere’s disease, 23
differential diagnosis, 35, 40
headshake nystagmus in, 55
MEP. See middle ear pressure (MEP)
microphone(s). See also directional microphone(s)
hearing-aid, 80, 80f
middle ear pressure (MEP)
abnormal, 26, 27f
definition, 26
normal values, 26, 26t
minimum audible angle (MAA), 2–3, 3f
MLV. See monitored live voice (MLV)
monitored live voice (MLV), 19
motor control test, 48–49, 49f, 50f
amplitude scaling on, 48–49, 49f
aphysiologic pattern on, 49, 50f
latency on, 48–49, 49f
weight symmetry on, 48–49, 49f
MPANLs. See maximum permissible ambient noise levels (MPANLs)

N
NAL-NL1 prescriptive method for hearing aid(s), 89–90, 89f, 90f
narrow-band noise (NBN), in masking for pure tone testing, 17
National Acoustic Laboratories (NAL), NAL-NL1 prescriptive method for hearing aids, 89–90, 89f, 90f
NBN. See narrow-band noise (NBN)
noise-induced hearing loss, 8
noise reduction, hearing aids and, 82
non-test ear (NTE), masking for, 17, 17f
NTE. See non-test ear (NTE)
nystagmus. See also optokinetic nystagmus (OPK/OKN) test
gaze-evoked, 55
positional, 55
positioning, 55–57
post-headshake, 55
response from caloric stimulation, 58
directional preponderance, 59
fixate suppress and, 59
spontaneous
of central origin, 54
characteristics, and origin, 54
classification, 54
measurement, 54
of peripheral origin, 54

O
OAE. See otoacoustic emissions (OAE)
occlusion effect (OE), 79
ocular counter-roll, 64, 66
OE. See occlusion effect (OE)
open-fit behind-the-ear (BTE)
 hearing aid(s), 78f, 79, 79f
receiver-in-the-aid (RITA), 79, 79f
receiver-in-the-ear (RITE), 79, 79f
optokinetic nystagmus (OPK/OKN)
test, 63–64, 64f
otoacoustic emissions (OAE). See
also distortion product
 otoacoustic emissions (DPOAE); transient-evoked otoacoustic emissions (TEOAE)
clinical significance, 32
definition, 32
measurement, 32
otoconia, 57
oVEMP. See vestibular evoked
 myogenic potential (VEMP) test, from
 extraocular muscles

P
pitch, 7
presbycusis, 8, 23
pure tone audiometry, 14–16. See
also air-conduction (AC)
 testing; bone-conduction (BC) testing
 thresholds obtained via, 16
pure tone sinewave, 7, 7f
pursuit abnormalities, 54, 54f

R
real ear aided response (REAR)
 measurement(s), 91–92
real ear front-to-back ratio
 measurement, 92, 92f
real ear insertion gain (REIG)
 measurement(s), 90f, 91–92
real ear measurements (REMs), for
 hearing aid(s), 89, 89f–92f, 90–92
real ear saturation response
 (RESR₉₀), 77, 89f, 90
real ear SPL measurement(s), 89f,
 91–92
real ear unaided gain (REUG)
 measurement(s), 91–92
REAR. See real ear aided response
 (REAR) measurement(s)
receiver-in-the-aid (RITA) open-fit
 BTE hearing aid(s), 79, 79f
receiver-in-the-ear (RITE) open-fit
 BTE hearing aid(s), 79, 79f
recruitment
definition, 5
sensorineural hearing loss and, 5–6, 5f
REIG. See real ear insertion gain
 (REIG) measurement(s)
REMs. See real ear measurements
 (REMs)
RESR₉₀. See real ear saturation
 response (RESR₉₀)
retrocochlear pathology
 ABR findings with, 38–39, 38f
 and acoustic reflex decay, 29
audiometric findings with, 25
REUG. See real ear unaided gain
 (REUG) measurement(s)
Rinne test, 31, 32t
RITA. See receiver-in-the-aid (RITA)
 open-fit BTE hearing aid(s)
RITE. See receiver-in-the-ear (RITE)
 open-fit BTE hearing aid(s)
rotational chair test, 60, 61f. See
also step velocity test
clinical applications, 66
limitations, 66–67
and vestibulo-ocular reflex (VOR)
 assessment, 60–62, 61f
S
saccades, abnormalities, 53, 53f
saccadic pursuit, 54, 54f
SAT. See speech awareness threshold (SAT)

Schwabach test, 31

Sensorineural hearing loss
dynamic range for, 6, 6f
and loudness recruitment, 5–6, 5f

Sensorineural hearing loss (SNHL), 21
audiogram for, 23, 24f
sudden, 23

Sensory organization test (SOT), 42–47
aphysiologic pattern, 45f, 46–47, 47f
and center of gravity (COG) scores, 47–48
equilibrium score (EQ) calculated from, 43–45, 44f
inter-trial variability on, 47, 47f
pathology-related patterns on, 45–47, 46f
sensory analysis graph, 44f, 48
six conditions for, 42–43, 43f
strategy analysis, 44f, 48
support surface dependence pattern, 45f, 46
sway patterns on, 47, 47f
vestibular dysfunction pattern, 45–46, 45f
vestibular loss pattern, 45f, 46, 46f
vision preference pattern, 45f, 46
visual dependence pattern, 45f, 46

Signal-to-noise ratio (SNR)
definition, 11
directional microphones and, 81
improvement, needed by
hearing-impaired listener to equal normal hearing, 11, 11f
monaural listening and, 11

Single-sided deafness (SSD). See hearing loss, unilateral

SLM. See sound level meter (SLM)
smooth pursuit test, 54, 54f
SNHL. See sensorineural hearing loss (SNHL)

SOT. See sensory organization test (SOT)

Sound(s)
high-frequency, localization, 3, 4f
low-frequency, localization, 4, 4f

Sound level meter (SLM), 12
sound localization, 83
psychoacoustic properties affecting, 3–4, 4f, 5f
speech audiometry, masking for, 17
speech awareness threshold (SAT), 2, 19

Speech recognition
background noise and, 9
frequency spectrum of vowels vs. consonants and, 8, 8f
upward spread of masking and, 9

Speech recognition threshold (SRT), 2
determination, 18–19
interpretation, 19, 19f
masking for, 20
SPL-O-Gram, 89f, 92
spondee words, used to establish speech recognition threshold (SRT), 18–19

SRT. See speech recognition threshold (SRT)

SSCD. See superior semicircular canal dehiscence (SSCD)

SSD (single-sided deafness). See hearing loss, unilateral

SSNHL. See sensorineural hearing loss (SNHL), sudden

Stacked auditory brainstem response, 39–40, 39f
static admittance, definition, 26
static compliance, 26–27, 27f
Stenger test
definition, 30
interpretation, 30
technique for, 30
step velocity test, decreased/
prolonged time constant on, 61f, 62
subjective visual vertical (SVV),
64. See also dynamic
subjective visual vertical (DSVV) test
superior semicircular canal
dehiscence (SSCD),
detection, 68–69, 69f
support surface dependence, on
sensory organization test,
45f, 46
SVV. See subjective visual vertical
(SVV)

T
telephone, amplified, 93, 94, 94f
TEOAE. See transient-evoked
otoacoustic emissions
(TEOAE)
TransEar, 84–85, 84f
transient-evoked otoacoustic
emissions (TEOAE), 32
interpretation, 33, 33f
measurement, 32–33
TTY/TDD, 94
tuning fork test(s)
clinical applications, 31
interpretation, 32t
TV listening devices, 93, 94f
tympanogram
abnormal, 26, 27f
normal, 26, 26f
tympanometry
definition, 25
equipment, 25, 25f
calibration, 12, 14f
normal values, 26, 26t
technique for, 25–26

U
unilateral hearing loss (UHL). See
hearing loss, unilateral
utricular dysfunction, dynamic
subjective visual vertical
(DSVV) test for, 64–66, 65f

V
validation, of hearing aids, 93
velocity storage, 63
VEMP. See vestibular evoked
myogenic potential
(VEMP) test
vent(s)/venting, for hearing aids,
85–86, 86f
verification, of hearing aids, 76, 93
vertigo. See benign paroxysmal
positional vertigo (BPPV)
vestibular dysfunction, on sensory
organization test, 45–46,
45f
vestibular evoked myogenic
potential (VEMP) test,
67–68, 67f
air-conducted, 67–68, 70
clinical applications, 70
from extraocular muscles, 67, 70
hearing loss and, 69
limitations, 70
response
amplitude, 69
latency, 69
threshold, 68
significant findings on, 68–69, 69f
from sternocleidomastoid
muscle, 67–68, 67f, 68f, 70
vestibular loss, on sensory
organization test, 45f, 46,
46f
vestibulocollic reflex, assessment,
67–68, 67f
vestibulo-ocular reflex (VOR), 42.
See also visual vestibular
ocular reflex (VVOR) test
assessment, 60, 61f
asymmetry, 61f, 62
failure to fixate suppress, 63
gain, 61f, 62
phase measures, 61f, 62
vestibulospinal reflex (VSR), evaluation, 42
videonystagmography. See video-oculography (VOG)
video-oculography (VOG), 42, 52, 52f
clinical applications, 59
limitations, 60
significant findings on, 60–62
vision preference, on sensory organization test, 45f, 46
visual dependence, on sensory organization test, 45f, 46
visual vestibular ocular reflex (VVOR) test, 63
VNG (videonystagmography). See video-oculography (VOG)
VOR. See vestibulo-ocular reflex (VOR)
vowel(s), frequency spectrum of, 8
and speech recognition, 8, 8f
VVOR. See visual vestibular ocular reflex (VVOR) test

W
Weber test, 31, 32t
weight symmetry, on motor control test, 48–49, 49f
word list(s), for word recognition score, 19
word recognition score (WRS), 2
determination, 19–20
interpretation, 20, 20f
testing, masking for, 20
WRS. See word recognition score (WRS)