Foreword

An Evidence-based Approach to Vitamins and Minerals: Health Benefits and Intake Recommendations by Dr. Jane Higdon and Dr. Victoria Drake provides a much needed source of authoritative information on the role of micronutrients in health promotion and in disease prevention and treatment. The book is especially important because of the potential health benefits of tuning up people’s micronutrient metabolism, particularly those with inadequate diets, such as the many low-income and elderly people. A metabolic tune-up is likely to have enormous health benefits but is currently not being addressed adequately by the medical community.

Maximum health and lifespan require metabolic harmony. It is commonly thought that Americans’ intake of the more than 40 essential micronutrients (vitamins, minerals, and other biochemicals that humans require) is adequate. Classic deficiency diseases such as scurvy, beriberi, pernicious anemia, and rickets are rare, but the evidence suggests that metabolic damage occurs at intake levels between the level causing acute micronutrient deficiency diseases and the recommended dietary allowances (RDAs). When one input in the metabolic network is inadequate, repercussions are felt on a large number of systems and can lead to degenerative disease. This may, for example, result in an increase in DNA damage (and possibly cancer), neuron decay (and possibly cognitive dysfunction), or mitochondrial decay (and possibly accelerated aging and degenerative diseases). The optimum amount of folate or zinc that is truly “required” is the amount that minimizes DNA damage and maximizes a healthy life span, which is higher than the amount to prevent acute disease. Vitamin and metabolite requirements of older people are likely to differ from those of younger people, but this issue has not been seriously examined. An optimal intake of micronutrients and metabolites will also vary with genetic constitution. A tune-up of micronutrient metabolism should give a marked increase in health at little cost. It is inexcusable that anyone in the world should have an inadequate intake of a vitamin or mineral, at great cost to that person’s health, when a year’s supply of a daily multivitamin/multimineral pill as insurance against deficiencies costs less than a few packs of cigarettes. Low-income populations, in general, are the most likely to have poor diets and have the most to gain from multivitamin/multimineral supplementation. As Hippocrates said: “Leave your drugs in the chemist’s pot if you can heal the patient with food.”

Although many degenerative diseases will benefit from optimal nutrition, and optimal nutrition clearly involves more than adequate micronutrients, there are several important reasons for focusing on micronutrients and health, particularly DNA damage: (1) More than 20 years of efforts to improve the American diet have not been notably successful, though this work must continue. A parallel approach focusing on micronutrient intake is overdue and might be more successful, since it should be easier to convince people to take a multivitamin/multimineral pill as insurance against ill health than to change their diet significantly. (2) A multivitamin/multimineral pill is inexpensive, is recognized as safe, and supplies the range of vitamins and minerals that a person requires, though not the essential fatty acids. Fortification of food is another approach that is useful, but its implementation has been very slow, as with folic acid fortification. Moreover, fortification of food does not allow for differences between individuals. For example, menstruating women need more iron than men or postmenopausal women, who may be getting too much. That is why two types of vitamin pills are marketed, one with iron and one without. With better knowledge it seems likely that a broader variety of multivitamin/multimineral pills will be developed, reflecting such life-stage differences.

The above issues and many others discussed in this book highlight the need to educate the public about the crucial importance of optimal nutrition and the potential health benefits of something as simple and affordable as a daily multivitamin/multimineral pill.
multivitamin/multimineral supplement. The numerous advances in the science of nutrition and changing ideas about optimal intakes of micronutrients make *An Evidence-based Approach to Vitamins and Minerals: Health Benefits and Intake Recommendations* an excellent and timely resource. Dr. Higdon, who had a background in health care and nutrition science, and Dr. Drake, who has an expertise in toxicology and nutrition, have synthesized a large amount of recent scientific research on vitamins and nutritionally essential minerals into an organized volume that includes information on optimal micronutrient intakes to prevent and treat chronic diseases. The book also contains much needed and up-to-date information on safety and drug interactions of vitamins and minerals. The credibility of this book is enhanced by the fact that it is endorsed by the Linus Pauling Institute at Oregon State University and that each chapter has been critically reviewed by a recognized expert in the field. Tuning up the metabolism to maximize human health will require scientists, clinicians, and educators to abandon outdated paradigms of micronutrients merely preventing deficiency disease and to explore more meaningful ways to prevent chronic disease and achieve optimal health through optimal nutrition.

Bruce N. Ames, PhD
University of California, Berkeley
Children’s Hospital Oakland Research Institute
Oakland, California
Preface to the Second Edition

I am honored to revise and update Dr. Jane Higdon’s book, *An Evidence-based Approach to Vitamins and Minerals: Health Benefits and Intake Recommendations*. Since the first edition was published in 2003, there has been a dramatic expansion of the literature on the role of micronutrients in human health and disease. In this second edition, all 27 chapters have been revised to incorporate information from the relevant, more recently published peer-reviewed studies, especially studies with human subjects. This edition includes the latest recommendations by the Food and Nutrition Board (FNB) of the Institute of Medicine: the FNB established new dietary reference intakes for potassium and sodium in 2004 and revised their recommendations for calcium and vitamin D in 2010. Additionally, some of the Linus Pauling Institute (LPI) recommendations have been modified to reflect current knowledge in micronutrient research. The LPI recommendations are daily intake levels aimed at the promotion of optimum health and prevention of chronic disease in healthy individuals. A large literature indicates that inadequate or marginal intake of vitamins and nutritionally essential minerals may increase one’s risk for a number of diseases, including cardiovascular diseases, certain cancers and neurodegenerative diseases, and osteoporosis. Micronutrient inadequacy can also impair immunity and thus increase susceptibility to communicable diseases like influenza. This book reviews the present knowledge on the roles of vitamins and minerals in disease prevention and disease treatment, in addition to providing basic information on biological function, deficiency, food sources, safety, and interactions with other micronutrients and drugs.

Acknowledgments

I wish to thank the faculty, staff, and students of the Linus Pauling Institute for their editorial advice and support in the revision of this book, especially Balz Frei, PhD, director and endowed chair; Stephen Lawson, administrative officer; and Barbara McVicar, assistant to the director. I am very appreciative to all of the distinguished scientists listed in the Editorial Advisory Board, who reviewed the contents of each chapter and provided helpful comments. I am particularly grateful to Donald M. Mock, MD, PhD, and Eva Obarzanek, PhD, for their valuable expertise in revising the chapters on biotin and salt, respectively. Finally, I deeply appreciate the skillful work by Dr. Higdon in writing the first edition of this book, which has been a popular resource for both health professionals and the public.

Victoria J. Drake, PhD
Manager, Micronutrient Information Center
Linus Pauling Institute
Oregon State University
Corvallis, Oregon
Preface to the First Edition

During my clinical training, I learned to approach micronutrient nutrition from the perspective of preventing or treating deficiency diseases, such as scurvy or iron-deficiency anemia. In clinical practice, I became increasingly interested in the potential for micronutrients to prevent and treat chronic diseases at intakes higher than those required to prevent deficiency. However, the standard medical and nutrition texts of the day rarely provided the kind of information I was looking for. Today, scientific and medical research on the roles of micronutrients in health and disease is expanding rapidly, as are, unfortunately, exaggerated health claims from numerous supplement manufacturers. Keeping up with the explosion of contradictory information regarding the safety and efficacy of dietary supplements has become an overwhelming task for consumers as well as health care and nutrition professionals. My goal in writing this book was to provide clinicians and consumers with a practical evidence-based reference to the rapidly expanding field of micronutrient nutrition.

While my own interest in nutrition and health led me to pursue doctoral work in nutrition and biochemistry, such a step should not be necessary for health care and nutrition professionals who want more information on the health implications of dietary and supplemental micronutrients. With the support of the Linus Pauling Institute at Oregon State University (LPI), I have synthesized and organized hundreds of experimental, clinical, and epidemiologic studies, providing an overview of the current scientific knowledge of the roles of vitamins and nutritionally important minerals in human health and disease. To ensure the accuracy of the information presented, I asked at least one recognized scientific expert in the field to review each chapter. The names and affiliations of these scientists are listed in the Editorial Advisory Board.

Throughout this book, I have tried to emphasize human research published in peer-reviewed journals. Where relevant, I have included the results of experimental studies in cell culture or animal models. Although randomized clinical trials provide the strongest evidence for the effect of micronutrient intake on disease outcomes in humans, it is not always ethical or practical to perform a double-blind, placebo-controlled trial. Observational studies can also provide useful information about micronutrient intake and disease outcomes. In reviewing the epidemiologic research, I have given more weight to the results of large prospective cohort studies, such as the Nurses Health Study, than retrospective case-control or cross-sectional studies. When available, I have included the results of systematic reviews and meta-analyses, which summarize information on the findings of many similar studies.

Nearly 35 years ago Linus Pauling, PhD, the only individual ever to win two unshared Nobel Prizes, concluded that micronutrients could play a significant role in enhancing human health and preventing chronic disease, not just deficiency disease. The basic premise that an optimum diet is the key to optimum health continues today as the foundation of the Linus Pauling Institute at Oregon State University. Scientists at the Linus Pauling Institute investigate the roles that micronutrients and other dietary constituents play in human aging and chronic diseases, particularly cancer, cardiovascular diseases, and neurodegenerative diseases. The goals of our research are to understand the molecular mechanisms behind the effects of nutrition on health and to determine how micronutrients and other dietary factors can be used in the prevention and treatment of diseases, thereby enhancing human health and well-being. The Linus Pauling Institute is also dedicated to training and supporting new researchers in the interdisciplinary science of nutrition and optimum health, as well as to educating the public about the science of optimum nutrition.

As you read this book, it will become apparent that the Linus Pauling Institute recommendations for certain micronutrients (e.g., vitamin C) differ considerably from those of Linus Pauling himself. Dr. Pauling, for whom the Linus Pauling Institute has great respect, based his own micro-
Preface to the First Edition

nutrient recommendations largely on theoretical arguments. For example, in developing his recommendations for vitamin C intake, he used cross-species comparisons, evolutionary arguments, and the amount of vitamin C likely consumed in a raw plant food diet. At the Linus Pauling Institute, we base our micronutrient recommendations on current scientific evidence, much of which was unavailable to Dr. Pauling. The Linus Pauling Institute’s recommendation for a vitamin C intake of at least 200 mg/day for generally healthy adults takes into account the currently available epidemiologic, biochemical, and clinical evidence. Similarly, the Linus Pauling Institute’s intake recommendation for each micronutrient in this book is based on the current scientific research available, while, in many cases, acknowledging that the intake levels most likely to promote optimum health remain to be determined.

Acknowledgments

First and foremost, I wish to thank the faculty, staff, and students of the Linus Pauling Institute for providing me with the inspiration and the opportunity to write this book. Specifically, Balz Frei, PhD, the director, and Stephen Lawson, the chief administrative officer of the Linus Pauling Institute, provided valuable advice and editorial assistance throughout the project. Barbara McVicar also provided much needed technical assistance and support. I am very grateful for the support of Bruce N. Ames, PhD, who was enthusiastic about this project from the beginning. His research and his eloquent foreword have been invaluable in laying the groundwork for this book.

I would like to thank each of the distinguished scientists listed in the Editorial Advisory Board for taking the time to carefully review each chapter of this book and provide insightful and constructive comments. I am also grateful to Aram Chobanian, MD, for reviewing the information presented on salt. The artist, Pat Grimaldi of the Communication Media Center at Oregon State University, was both patient and skillful in creating the book’s illustrations.

This project would not have been possible without the generous financial support of the donors to the Linus Pauling Institute, who deserve special thanks. Finally, although I did not know him personally, I would like to thank Dr. Linus Pauling for courageously stimulating scientific, medical, and popular interest in the roles played by micronutrients in promoting optimum health and preventing and treating disease.

Jane Higdon, PhD
Linus Pauling Institute
Oregon State University
Corvallis, Oregon
Contents

1 Biotin...1
 Function ...1
 Enzyme Cofactor1
 Histone Biotinylation1
 Deficiency ...1
 Signs and Symptoms1
 Predisposing Conditions2
 Adequate Intake2
 Disease Prevention3
 Birth Defects ..3
 Disease Treatment3
 Diabetes Mellitus3
 Brittle Fingernails3
 Hair Loss ...4
 Sources ..4
 Food Sources4
 Bacterial Synthesis4
 Safety ..4
 Toxicity ...4
 Nutrient Interactions4
 Drug Interactions5

2 Folic Acid ..7
 Function ...7
 One-carbon Metabolism7
 Nutrient Interactions8
 Deficiency ..8
 Causes ...8
 Symptoms .. 9
 Recommended Dietary Allowance9
 Dietary Folate Equivalents9
 Genetic Variation in Folate Requirements10
 Disease Prevention10
 Pregnancy Complications10
 Cardiovascular Diseases11
 Cancer ...12
 Alzheimer Disease and Cognitive Impairment 13
 Disease Treatment13
 Sources ..14
 Food Sources14
 Supplements ..14
 Safety ..14
 Toxicity ..14
 Drug Interactions14

3 Niacin ..17
 Function ...17
 Oxidation–Reduction (Redox) Reactions17
 Non-redox Reactions17
 Deficiency ..18
 Pellagra ...18
 Nutrient Interactions19
 Recommended Dietary Allowance19
 Disease Prevention19
 Cancer ...19
 Type 1 Diabetes Mellitus20
 Disease Treatment21
 High Cholesterol and Cardiovascular Disease 21
 Human Immunodeficiency Virus21
 Sources ..22
 Food Sources22
 Supplements ..22
 Safety ..22
 Toxicity ..22
 Drug Interactions23

4 Pantothenic Acid26
 Function ...26
 Coenzyme A ..26
 Acyl-carrier Protein26
 Deficiency ..26
 Adequate Intake27
 Disease Prevention27
 Disease Treatment27
 Wound Healing27
 High Cholesterol 27
 Sources ..28
 Food Sources28
 Intestinal Bacteria28
 Supplements28
 Safety ..28
 Toxicity ..28
 Drug Interactions29
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Riboflavin Function</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Oxidation–Reduction (Redox) Reactions</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Antioxidant Functions</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Nutrient Interactions</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Deficiency</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Risk Factors for Riboflavin Deficiency</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Recommended Dietary Allowance</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Disease Prevention</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Cataracts</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Disease Treatment</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Migraine Headaches</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Sources</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Food Sources</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Supplements</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Safety</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Toxicity</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Drug Interactions</td>
<td>34</td>
</tr>
<tr>
<td>6</td>
<td>Thiamin Function</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Coenzyme Function</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Deficiency</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Causes of Thiamin Deficiency</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Recommended Dietary Allowance</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Disease Prevention</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Cataracts</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Disease Treatment</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Alzheimer Disease</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Congestive Heart Failure</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Cancer</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Sources</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Food Sources</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Supplements</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Safety</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Toxicity</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Drug Interactions</td>
<td>40</td>
</tr>
<tr>
<td>7</td>
<td>Vitamin A Function</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Vision</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>Regulation of Gene Expression</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Immunity</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Growth and Development</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Red Blood Cell Production</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Nutrient Interactions</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Deficiency</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Vitamin A Deficiency and Vision</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Vitamin A Deficiency and Infectious Disease</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Recommended Dietary Allowance</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Disease Prevention</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Cancer</td>
<td>45</td>
</tr>
<tr>
<td>8</td>
<td>Vitamin B<sub>6</sub> Function</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Nervous System Function</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Red Blood Cell Formation and Function</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Niacin Formation</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Hormone Function</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Nucleic Acid Synthesis</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Deficiency</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Recommended Dietary Allowance</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Disease Prevention</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Cardiovascular Diseases</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Immune Function</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Cognitive Function</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Kidney Stones</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Disease Treatment</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Side Effects of Oral Contraceptives</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Premenstrual Syndrome</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Depression</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Nausea and Vomiting in Pregnancy</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Carpal Tunnel Syndrome</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Sources</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Food Sources</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Supplements</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>Safety</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Toxicity</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>Drug Interactions</td>
<td>57</td>
</tr>
<tr>
<td>9</td>
<td>Vitamin B<sub>12</sub> Function</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Cofactor for Methionine Synthase</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Cofactor for Methylmalonyl-CoA Mutase</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Deficiency</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Causes of Vitamin B<sub>12</sub> Deficiency</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>Other Causes of Vitamin B<sub>12</sub> Deficiency</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Symptoms of Vitamin B<sub>12</sub> Deficiency</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>Recommended Dietary Allowance</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Disease Prevention</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Cardiovascular Diseases</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Cancer</td>
<td>64</td>
</tr>
</tbody>
</table>
10 Vitamin C .. 70
 Function .. 70
 Deficiency 70
 Scurvy ... 70
 Recommended Dietary Allowance 70
 Disease Prevention 70
 Cardiovascular Diseases 71
 Cancer .. 72
 Cataracts .. 73
 Gout .. 73
 Lead Toxicity 73
 Role in Immunity 74
 Disease Treatment 74
 Cardiovascular Diseases 74
 Cancer .. 75
 Diabetes Mellitus 75
 Common Cold 76
 Sources ... 76
 Food Sources 76
 Supplements 76
 Safety ... 77
 Toxicity ... 77
 Does Vitamin C Promote Oxidative Damage under Physiological Conditions? 78
 Kidney Stones 78
 Drug Interactions 78

11 Vitamin D 83
 Function .. 83
 Activation of Vitamin D 83
 Mechanisms of Action 83
 Calcium Balance 83
 Cell Differentiation 83
 Immunity .. 84
 Insulin Secretion 84
 Blood Pressure Regulation 84
 Deficiency 85
 Severe Vitamin D Deficiency 85
 Risk Factors for Vitamin D Deficiency 85
 Assessing Vitamin D Nutritional Status ... 86
 Recommended Dietary Allowance 86
 Disease Prevention 87
 Osteoporosis 87
 Cancer .. 88
 Autoimmune Diseases 89
 Hypertension 90
 Sources .. 90
 Sunlight ... 90
 Food Sources 91
 Supplements 91
 Safety ... 91
 Toxicity ... 91
 Drug Interactions 92

12 Vitamin E 96
 Function .. 96
 α-Tocopherol 96
 γ-Tocopherol 96
 Deficiency 97
 Recommended Dietary Allowance 97
 Disease Prevention 98
 Cardiovascular Diseases 98
 Cataracts .. 98
 Immune Function 99
 Cancer .. 99
 Disease Treatment 99
 Cardiovascular Diseases 99
 Diabetes Mellitus 100
 Dementia (Impaired Cognitive Function) ... 100
 Cancer .. 101
 Sources .. 101
 Food Sources 101
 Supplements 102
 Safety ... 102
 Toxicity ... 102
 Vitamin E Supplementation and All-cause Mortality ... 103
 Drug Interactions 103

13 Vitamin K 107
 Function .. 107
 Coagulation 107
 Bone Mineralization 108
 Cell Growth 108
 Deficiency 109
 Controversy Surrounding Vitamin K Administration and Newborn Infants 109
 Adequate Intake 109
 Disease Prevention 110
 Osteoporosis 110
 Vascular Calcification and Cardiovascular Disease .. 111
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sources</td>
<td>112</td>
</tr>
<tr>
<td>Food Sources</td>
<td>112</td>
</tr>
<tr>
<td>Intestinal Bacteria</td>
<td>112</td>
</tr>
<tr>
<td>Safety</td>
<td>112</td>
</tr>
<tr>
<td>Toxicity</td>
<td>112</td>
</tr>
<tr>
<td>Nutrient Interactions</td>
<td>112</td>
</tr>
<tr>
<td>Drug Interactions</td>
<td>113</td>
</tr>
<tr>
<td>14 Calcium</td>
<td>115</td>
</tr>
<tr>
<td>Function</td>
<td>115</td>
</tr>
<tr>
<td>Structure</td>
<td>115</td>
</tr>
<tr>
<td>Cell Signaling</td>
<td>115</td>
</tr>
<tr>
<td>Cofactor for Enzymes and Proteins</td>
<td>115</td>
</tr>
<tr>
<td>Regulation of Calcium Levels</td>
<td>115</td>
</tr>
<tr>
<td>Deficiency</td>
<td>116</td>
</tr>
<tr>
<td>Nutrient Interactions</td>
<td>116</td>
</tr>
<tr>
<td>Recommended Dietary Allowance</td>
<td>117</td>
</tr>
<tr>
<td>Disease Prevention</td>
<td>118</td>
</tr>
<tr>
<td>Colorectal Cancer</td>
<td>118</td>
</tr>
<tr>
<td>Osteoporosis</td>
<td>118</td>
</tr>
<tr>
<td>Kidney Stones</td>
<td>119</td>
</tr>
<tr>
<td>Pregnancy-induced Hypertension</td>
<td>120</td>
</tr>
<tr>
<td>Lead Toxicity</td>
<td>120</td>
</tr>
<tr>
<td>Disease Treatment</td>
<td>121</td>
</tr>
<tr>
<td>Hypertension</td>
<td>121</td>
</tr>
<tr>
<td>Premenstrual Syndrome</td>
<td>121</td>
</tr>
<tr>
<td>Sources</td>
<td>122</td>
</tr>
<tr>
<td>Food Sources</td>
<td>122</td>
</tr>
<tr>
<td>Supplements</td>
<td>122</td>
</tr>
<tr>
<td>Lead in Calcium Supplements</td>
<td>123</td>
</tr>
<tr>
<td>Safety</td>
<td>123</td>
</tr>
<tr>
<td>Toxicity</td>
<td>123</td>
</tr>
<tr>
<td>Do High Calcium Intakes Increase the Risk of Prostate Cancer?</td>
<td>124</td>
</tr>
<tr>
<td>Drug Interactions</td>
<td>124</td>
</tr>
<tr>
<td>Nutrient Interactions</td>
<td>125</td>
</tr>
<tr>
<td>Recent Research</td>
<td>125</td>
</tr>
<tr>
<td>Calcium and Weight Loss</td>
<td>125</td>
</tr>
<tr>
<td>15 Chromium</td>
<td>128</td>
</tr>
<tr>
<td>Function</td>
<td>128</td>
</tr>
<tr>
<td>Nutrient Interactions</td>
<td>128</td>
</tr>
<tr>
<td>Deficiency</td>
<td>129</td>
</tr>
<tr>
<td>Adequate Intake</td>
<td>129</td>
</tr>
<tr>
<td>Disease Prevention</td>
<td>130</td>
</tr>
<tr>
<td>Impaired Glucose Tolerance and Type 2 Diabetes Mellitus</td>
<td>130</td>
</tr>
<tr>
<td>Cardiovascular Diseases</td>
<td>130</td>
</tr>
<tr>
<td>Health Claims</td>
<td>130</td>
</tr>
<tr>
<td>Disease Treatment</td>
<td>131</td>
</tr>
<tr>
<td>Type 2 Diabetes Mellitus</td>
<td>131</td>
</tr>
<tr>
<td>Gestational Diabetes</td>
<td>131</td>
</tr>
<tr>
<td>Sources</td>
<td>132</td>
</tr>
<tr>
<td>Food Sources</td>
<td>132</td>
</tr>
<tr>
<td>Supplements</td>
<td>132</td>
</tr>
<tr>
<td>Safety</td>
<td>132</td>
</tr>
<tr>
<td>Toxicity</td>
<td>132</td>
</tr>
<tr>
<td>Drug Interactions</td>
<td>133</td>
</tr>
<tr>
<td>16 Copper</td>
<td>135</td>
</tr>
<tr>
<td>Function</td>
<td>135</td>
</tr>
<tr>
<td>Energy Production</td>
<td>135</td>
</tr>
<tr>
<td>Connective Tissue Formation</td>
<td>135</td>
</tr>
<tr>
<td>Iron Metabolism</td>
<td>135</td>
</tr>
<tr>
<td>Central Nervous System</td>
<td>135</td>
</tr>
<tr>
<td>Melanin Formation</td>
<td>135</td>
</tr>
<tr>
<td>Antioxidant Functions</td>
<td>135</td>
</tr>
<tr>
<td>Regulation of Gene Expression</td>
<td>136</td>
</tr>
<tr>
<td>Nutrient Interactions</td>
<td>136</td>
</tr>
<tr>
<td>Deficiency</td>
<td>136</td>
</tr>
<tr>
<td>Individuals at Risk of Deficiency</td>
<td>137</td>
</tr>
<tr>
<td>Recommended Dietary Allowance</td>
<td>137</td>
</tr>
<tr>
<td>Disease Prevention</td>
<td>137</td>
</tr>
<tr>
<td>Cardiovascular Diseases</td>
<td>137</td>
</tr>
<tr>
<td>Immune System Function</td>
<td>138</td>
</tr>
<tr>
<td>Osteoporosis</td>
<td>139</td>
</tr>
<tr>
<td>Sources</td>
<td>139</td>
</tr>
<tr>
<td>Food Sources</td>
<td>139</td>
</tr>
<tr>
<td>Supplements</td>
<td>139</td>
</tr>
<tr>
<td>Safety</td>
<td>139</td>
</tr>
<tr>
<td>Toxicity</td>
<td>139</td>
</tr>
<tr>
<td>Drug Interactions</td>
<td>140</td>
</tr>
<tr>
<td>17 Fluoride (Fluorine)</td>
<td>142</td>
</tr>
<tr>
<td>Function</td>
<td>142</td>
</tr>
<tr>
<td>Nutrient Interactions</td>
<td>142</td>
</tr>
<tr>
<td>Deficiency</td>
<td>142</td>
</tr>
<tr>
<td>Adequate Intake</td>
<td>142</td>
</tr>
<tr>
<td>Disease Prevention</td>
<td>143</td>
</tr>
<tr>
<td>Dental Caries</td>
<td>143</td>
</tr>
<tr>
<td>Osteoporosis</td>
<td>143</td>
</tr>
<tr>
<td>Disease Treatment</td>
<td>144</td>
</tr>
<tr>
<td>Osteoporosis</td>
<td>144</td>
</tr>
<tr>
<td>Sources</td>
<td>145</td>
</tr>
<tr>
<td>Water Fluoridation</td>
<td>145</td>
</tr>
<tr>
<td>Food and Beverage Sources</td>
<td>145</td>
</tr>
<tr>
<td>Supplements</td>
<td>145</td>
</tr>
<tr>
<td>Toothpaste</td>
<td>146</td>
</tr>
<tr>
<td>Safety</td>
<td>146</td>
</tr>
<tr>
<td>Adverse Effects</td>
<td>146</td>
</tr>
<tr>
<td>Drug Interactions</td>
<td>147</td>
</tr>
<tr>
<td>Disease Prevention</td>
<td>180</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----</td>
</tr>
<tr>
<td>Osteoporosis</td>
<td>181</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>181</td>
</tr>
<tr>
<td>Seizure Disorders</td>
<td>181</td>
</tr>
<tr>
<td>Sources</td>
<td>181</td>
</tr>
<tr>
<td>Food Sources</td>
<td>181</td>
</tr>
<tr>
<td>Breast Milk and Infant Formulas</td>
<td>182</td>
</tr>
<tr>
<td>Water</td>
<td>182</td>
</tr>
<tr>
<td>Supplements</td>
<td>182</td>
</tr>
<tr>
<td>Safety</td>
<td>182</td>
</tr>
<tr>
<td>Toxicity</td>
<td>182</td>
</tr>
<tr>
<td>Individuals with Increased Susceptibility to Manganese Toxicity</td>
<td>183</td>
</tr>
<tr>
<td>Drug Interactions</td>
<td>184</td>
</tr>
<tr>
<td>High Levels of Manganese in Supplements Marketed for Bone/Joint Health</td>
<td>184</td>
</tr>
</tbody>
</table>

22 Molybdenum [187]

<table>
<thead>
<tr>
<th>Function</th>
<th>187</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutrient Interactions</td>
<td>187</td>
</tr>
<tr>
<td>Deficiency</td>
<td>187</td>
</tr>
<tr>
<td>Recommended Dietary Allowance</td>
<td>188</td>
</tr>
<tr>
<td>Disease Prevention</td>
<td>188</td>
</tr>
<tr>
<td>Gastroesophageal Cancer</td>
<td>188</td>
</tr>
<tr>
<td>Sources</td>
<td>189</td>
</tr>
<tr>
<td>Food Sources</td>
<td>189</td>
</tr>
<tr>
<td>Supplements</td>
<td>189</td>
</tr>
<tr>
<td>Safety</td>
<td>189</td>
</tr>
<tr>
<td>Toxicity</td>
<td>189</td>
</tr>
<tr>
<td>Drug Interactions</td>
<td>189</td>
</tr>
</tbody>
</table>

23 Phosphorus [191]

<table>
<thead>
<tr>
<th>Function</th>
<th>191</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutrient Interactions</td>
<td>191</td>
</tr>
<tr>
<td>Deficiency</td>
<td>192</td>
</tr>
<tr>
<td>Recommended Dietary Allowance</td>
<td>193</td>
</tr>
<tr>
<td>Sources</td>
<td>193</td>
</tr>
<tr>
<td>Food Sources</td>
<td>193</td>
</tr>
<tr>
<td>Supplements</td>
<td>193</td>
</tr>
<tr>
<td>Safety</td>
<td>193</td>
</tr>
<tr>
<td>Toxicity</td>
<td>193</td>
</tr>
<tr>
<td>Drug Interactions</td>
<td>194</td>
</tr>
</tbody>
</table>

24 Potassium [196]

<table>
<thead>
<tr>
<th>Function</th>
<th>196</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance of Membrane Potential</td>
<td>196</td>
</tr>
<tr>
<td>Cofactor for Enzymes</td>
<td>196</td>
</tr>
<tr>
<td>Deficiency</td>
<td>197</td>
</tr>
<tr>
<td>Conditions that Increase the Risk of Hypokalemia</td>
<td>197</td>
</tr>
<tr>
<td>Adequate Intake</td>
<td>197</td>
</tr>
</tbody>
</table>

25 Selenium [203]

<table>
<thead>
<tr>
<th>Function</th>
<th>203</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selenoproteins</td>
<td>203</td>
</tr>
<tr>
<td>Nutrient Interactions</td>
<td>204</td>
</tr>
<tr>
<td>Deficiency</td>
<td>205</td>
</tr>
<tr>
<td>Individuals at Increased Risk of Selenium Deficiency</td>
<td>205</td>
</tr>
<tr>
<td>Keshan Disease</td>
<td>205</td>
</tr>
<tr>
<td>Kashin–Beck Disease</td>
<td>205</td>
</tr>
<tr>
<td>Recommended Dietary Allowance</td>
<td>205</td>
</tr>
<tr>
<td>Disease Prevention</td>
<td>206</td>
</tr>
<tr>
<td>Immune Function</td>
<td>206</td>
</tr>
<tr>
<td>Viral Infection</td>
<td>206</td>
</tr>
<tr>
<td>Cancer</td>
<td>206</td>
</tr>
<tr>
<td>Cardiovascular Diseases</td>
<td>208</td>
</tr>
<tr>
<td>Type 2 Diabetes Mellitus</td>
<td>209</td>
</tr>
<tr>
<td>Disease Treatment</td>
<td>209</td>
</tr>
<tr>
<td>HIV/AIDS</td>
<td>209</td>
</tr>
<tr>
<td>Sources</td>
<td>209</td>
</tr>
<tr>
<td>Food Sources</td>
<td>209</td>
</tr>
<tr>
<td>Supplements</td>
<td>210</td>
</tr>
<tr>
<td>Selenium-enriched Vegetables</td>
<td>210</td>
</tr>
<tr>
<td>Safety</td>
<td>210</td>
</tr>
<tr>
<td>Toxicity</td>
<td>210</td>
</tr>
<tr>
<td>Drug Interactions</td>
<td>211</td>
</tr>
</tbody>
</table>

26 Sodium Chloride [214]

<table>
<thead>
<tr>
<th>Function</th>
<th>214</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance of Membrane Potential</td>
<td>214</td>
</tr>
<tr>
<td>Nutrient Absorption and Transport</td>
<td>215</td>
</tr>
<tr>
<td>Maintenance of Blood Volume and Blood Pressure</td>
<td>215</td>
</tr>
<tr>
<td>Deficiency</td>
<td>215</td>
</tr>
<tr>
<td>Hyponatremia</td>
<td>215</td>
</tr>
<tr>
<td>Adequate Intake for Sodium</td>
<td>216</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>Disease Prevention (Dietary Sodium and Disease)</td>
<td>216</td>
</tr>
<tr>
<td>Gastric Cancer</td>
<td>216</td>
</tr>
<tr>
<td>Osteoporosis</td>
<td>216</td>
</tr>
<tr>
<td>Kidney Stones</td>
<td>217</td>
</tr>
<tr>
<td>Hypertension</td>
<td>217</td>
</tr>
<tr>
<td>Cardiovascular Diseases</td>
<td>219</td>
</tr>
<tr>
<td>Sources</td>
<td>219</td>
</tr>
<tr>
<td>Safety</td>
<td>219</td>
</tr>
<tr>
<td>Toxicity</td>
<td>219</td>
</tr>
<tr>
<td>Adverse Effects</td>
<td>220</td>
</tr>
<tr>
<td>Drug Interactions</td>
<td>221</td>
</tr>
<tr>
<td>27 Zinc</td>
<td>224</td>
</tr>
<tr>
<td>Function</td>
<td>224</td>
</tr>
<tr>
<td>Catalytic Role</td>
<td>224</td>
</tr>
<tr>
<td>Structural Role</td>
<td>224</td>
</tr>
<tr>
<td>Regulatory Role</td>
<td>224</td>
</tr>
<tr>
<td>Nutrient Interactions</td>
<td>224</td>
</tr>
<tr>
<td>Deficiency</td>
<td>225</td>
</tr>
<tr>
<td>Severe Zinc Deficiency</td>
<td>225</td>
</tr>
<tr>
<td>Mild Zinc Deficiency</td>
<td>225</td>
</tr>
<tr>
<td>Recommended Dietary Allowance</td>
<td>226</td>
</tr>
<tr>
<td>Disease Prevention</td>
<td>226</td>
</tr>
<tr>
<td>Impaired Growth and Development</td>
<td>226</td>
</tr>
<tr>
<td>Increased Susceptibility to Infectious Disease in Children</td>
<td>227</td>
</tr>
<tr>
<td>Impaired Immune Response in Elderly People</td>
<td>227</td>
</tr>
<tr>
<td>Pregnancy Complications</td>
<td>227</td>
</tr>
<tr>
<td>Disease Treatment</td>
<td>228</td>
</tr>
<tr>
<td>Common Cold</td>
<td>228</td>
</tr>
<tr>
<td>Age-related Macular Degeneration</td>
<td>229</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>229</td>
</tr>
<tr>
<td>HIV/AIDS</td>
<td>229</td>
</tr>
<tr>
<td>Sources</td>
<td>229</td>
</tr>
<tr>
<td>Food Sources</td>
<td>229</td>
</tr>
<tr>
<td>Supplements</td>
<td>230</td>
</tr>
<tr>
<td>Safety</td>
<td>230</td>
</tr>
<tr>
<td>Toxicity</td>
<td>230</td>
</tr>
<tr>
<td>Drug Interactions</td>
<td>230</td>
</tr>
<tr>
<td>Appendix</td>
<td>235</td>
</tr>
<tr>
<td>Nutrient–Nutrient Interactions</td>
<td>236</td>
</tr>
<tr>
<td>Drug–Nutrient Interactions</td>
<td>239</td>
</tr>
<tr>
<td>Quick Reference to Diseases</td>
<td>243</td>
</tr>
<tr>
<td>Glossary</td>
<td>248</td>
</tr>
<tr>
<td>The Linus Pauling Institute</td>
<td></td>
</tr>
<tr>
<td>Prescription for Health</td>
<td>270</td>
</tr>
<tr>
<td>Healthy Eating</td>
<td>270</td>
</tr>
<tr>
<td>Healthy Lifestyle</td>
<td>270</td>
</tr>
<tr>
<td>Supplements</td>
<td>270</td>
</tr>
<tr>
<td>Index</td>
<td>273</td>
</tr>
</tbody>
</table>
How To Use This Book

Chapter Organization

Information on individual vitamins, organic (carbon-containing) compounds that are required by humans in small amounts from the diet to maintain normal physiological function, can be found in Chapters 1 through 13, in alphabetical order by vitamin. In addition to vitamins, a number of inorganic elements (minerals) are required in the human diet to support a wide range of biological functions. Information on nutritionally important minerals can be found in Chapters 14 through 27, in alphabetical order by mineral. For ease of use, the information in each chapter is organized in the following manner:

- **Function** Current scientific understanding of the function of the micronutrient with respect to maintaining health and preventing disease.
- **Deficiency** Risk factors, signs, symptoms, and physiological effects of frank deficiency of the micronutrient.
- **Disease Prevention** Where controlled research is available, information on the role(s) of the micronutrient in the prevention of disease.
- **Disease Treatment** Where controlled research is available, information on the role(s) of the micronutrient in the treatment of disease.
- **Sources** Information on dietary, supplemental, and other sources of the micronutrient. When available, this section includes a table of dietary sources.
- **Safety** Information on toxicity and adverse effects of the micronutrient, as well as micronutrient–drug interactions.
- **The Linus Pauling Institute Recommendation** A daily intake recommendation based on relevant scientific research and reflecting an intake level aimed at the prevention of chronic disease and the promotion of optimum health in generally healthy individuals. Recommendations for older adults (over the age of 50 years) are also addressed in this section.

- **References** In addition to the Linus Pauling Institute Recommendations, the Food and Nutrition Board (FNB) of the Institute of Medicine appoints committees of expert scientists to set Dietary Reference Intakes (DRIs), which are used to plan and evaluate diets of apparently healthy people. Three different DRIs appear regularly throughout this book:
 - The *Recommended Dietary Allowance* (RDA) is defined as the average daily dietary intake level of a specific nutrient sufficient to meet the requirement of nearly all (97%–98%) healthy individuals in a particular life-stage group. Because RDAs generally reflect intake levels designed to prevent deficiency, they are presented in the *Deficiency* section of each chapter.
 - An *Adequate Intake* (AI) is provided if there is insufficient evidence to determine an RDA. The AI is based on experimentally derived intake levels or observed average intake levels of apparently healthy people. For example, the AI of a nutrient for infants is generally based on the average daily intake of that nutrient supplied by human milk in healthy, full-term infants who are exclusively breastfed. Because AIs reflect intake levels thought to prevent deficiency, they are also presented in the *Deficiency* section of each chapter.
 - The *Tolerable Upper Intake Level* (UL) is defined as the highest level of a nutrient determined to pose no risk of adverse effects for almost all individuals in the general population. The UL is discussed in the *Safety* section of each chapter.
Appendices

Several appendices have been included to facilitate the use of this book by clinicians as well as consumers.

- **Nutrient—Nutrient Interactions** A table summarizing the information on nutrient—nutrient interactions discussed in the book.

- **Drug—Nutrient Interactions** A table summarizing the information on nutrient—drug interactions discussed in the book.

- **Quick Reference to Diseases** A useful chart that allows the reader to locate micronutrient information by disease or health condition.

- **Glossary**

- **The Linus Pauling Institute Prescription for Health** A list summarizing the Linus Pauling Institute Recommendations for a healthy diet, lifestyle, and supplement use.
2 Folic Acid

The terms *folic acid* and *folate* are often used interchangeably for this water-soluble B-complex vitamin. Folic acid, the more stable form, occurs rarely in foods or the human body but is the form most often used in vitamin supplements and fortified foods. Naturally occurring folates exist in many chemical forms. They are found in foods as well as in metabolically active forms in the human body. In the following discussion, forms found in food or the body are referred to as *folates*, whereas the form found in supplements or fortified foods is referred to as *folic acid*.

Function

One-carbon Metabolism

The only function of folate coenzymes in the body appears to be in mediating the transfer of one-carbon units. Folate coenzymes act as acceptors and donors of one-carbon units in a variety of reactions critical to the metabolism of nucleic acids and amino acids.

Nucleic acid metabolism. Folate coenzymes play a vital role in DNA metabolism through two different pathways (Fig. 2.1):

1. The synthesis of DNA from its precursors (thymidine and purines) is dependent on folate coenzymes.
2. A folate coenzyme is required for the synthesis of methionine, and methionine is required for the synthesis of S-adenosylmethionine (SAM).

SAM is a methyl group (one-carbon unit) donor used in many biological methylation reactions, including the methylation of a number of sites within DNA and RNA. Methylation of DNA may be important in cancer prevention.

![Fig. 2.1 Folate and nucleic acid metabolism: 5,10-methylene tetrahydrofolate (THF) is required for the synthesis of nucleic acids, and 5-methyl THF is required for the formation of methionine from homocysteine. Methionine, in the form of S-adenosylmethionine, is required for many biological methylation reactions, including DNA methylation. Methylene TH-folate reductase is a flavin-dependent enzyme required to catalyze the reduction of 5,10-methylene THF to 5-methyl THF.](image-url)
Amino acid metabolism. Folate coenzymes are required for the metabolism of several important amino acids. The synthesis of methionine from homocysteine requires a folate coenzyme as well as a vitamin B₁₂-dependent enzyme. Thus, folate deficiency can result in decreased synthesis of methionine and a build-up of homocysteine. Increased levels of homocysteine may be a risk factor for heart disease as well as several other chronic diseases.

Nutrient Interactions

The metabolism of homocysteine, an intermediate in the metabolism of sulfur-containing amino acids, provides an example of the interrelationships of nutrients necessary for optimal physiological function and health. Healthy individuals use two different pathways to metabolize homocysteine (Fig. 2.2). One pathway (methionine synthase) synthesizes methionine from homocysteine and depends on a folate coenzyme and a vitamin B₁₂-dependent enzyme. The other pathway converts homocysteine to another amino acid, cysteine, and requires two vitamin B₆-dependent enzymes. Thus, the amount of homocysteine in the blood is regulated by three vitamins: folate, vitamin B₁₂, and vitamin B₆.

Deficiency

Causes

Folate deficiency is most often caused by a dietary insufficiency; however, it can occur in a number of other situations, for example, alcoholism is associated with low dietary intake and diminished absorption of folate, which can lead to

Fig. 2.2 Homocysteine metabolism: S-adenosylhomocysteine is formed during S-adenosylmethionine-dependent methylation reactions, and the hydrolysis of S-adenosylhomocysteine results in homocysteine. Homocysteine may be remethylated to form methionine by a folate-dependent reaction that is catalyzed by methionine synthase, a vitamin B₁₂-dependent enzyme. Alternately, homocysteine may be metabolized to cysteine in reactions catalyzed by two vitamin B₆-dependent enzymes.
folate deficiency. In addition, certain conditions such as pregnancy or cancer result in increased rates of cell division and metabolism, causing an increase in the body's demand for folate. Several medications may also contribute to deficiency (see “Drug Interactions,” p. 14).

Symptoms

Individuals in the early stages of folate deficiency may not show obvious symptoms, but their blood levels of homocysteine may increase. Rapidly dividing cells are most vulnerable to the effects of folate deficiency, so when the folate supply to the rapidly dividing cells of the bone marrow is inadequate, blood cell division becomes abnormal, resulting in fewer but larger red blood cells. This type of anemia is called *megaloblastic* or *macrocytic* anemia, referring to the enlarged, immature red blood cells. Neutrophils, a type of white blood cell, become hypersegmented, a change that can be found by examining a blood sample microscopically. As normal red blood cells have a lifetime in the circulation of approximately 4 months, it can take months for folate-deficient individuals to develop the characteristic megaloblastic anemia. Progression of such an anemia leads to decreased oxygen-carrying capacity of the blood and may ultimately result in symptoms of fatigue, weakness, and shortness of breath. It is important to point out that megaloblastic anemia resulting from folate deficiency is identical to the megaloblastic anemia resulting from vitamin B₁₂ deficiency, and further clinical testing is required to diagnose the true cause of megaloblastic anemia.

Recommended Dietary Allowance

Traditionally, the dietary folate requirement was defined as the amount needed to prevent a deficiency severe enough to cause symptoms such as anemia. The most recent recommended dietary allowance (RDA) (Table 2.1) was based primarily on the adequacy of red blood cell folate concentrations at different levels of folate intake, as judged by the absence of abnormal hematological indicators. Red cell folate has been shown to correlate with liver folate stores. Maintenance of normal blood homocysteine levels, an indicator of one-carbon metabolism, was considered only as an ancillary indicator of adequate folate intake. As pregnancy is associated with a significant increase in cell division and other metabolic processes that require folate coenzymes, the RDA for pregnant women is considerably higher than for women who are not pregnant. However, the prevention of neural tube defects (NTDs) was not considered when setting the RDA for pregnant women. Rather, reducing the risk of NTDs was considered in a separate recommendation for women capable of becoming pregnant, because the crucial events in neural tube development occur before many women are aware that they are pregnant.

Dietary Folate Equivalents

When the Food and Nutrition Board (FNB) of the Institute of Medicine set the new dietary recommendation for folate, they introduced a new unit, the dietary folate equivalent (DFE):

<table>
<thead>
<tr>
<th>Life stage</th>
<th>Age</th>
<th>Males (µg/day)</th>
<th>Females (µg/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infants</td>
<td>0–6 months</td>
<td>65 (AI)</td>
<td>65 (AI)</td>
</tr>
<tr>
<td>Infants</td>
<td>7–12 months</td>
<td>80 (AI)</td>
<td>80 (AI)</td>
</tr>
<tr>
<td>Children</td>
<td>1–3 years</td>
<td>150</td>
<td>150</td>
</tr>
<tr>
<td>Children</td>
<td>4–8 years</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>Children</td>
<td>9–13 years</td>
<td>300</td>
<td>300</td>
</tr>
<tr>
<td>Adolescents</td>
<td>14–18 years</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>Adults</td>
<td>≥19 years</td>
<td>400</td>
<td>400</td>
</tr>
<tr>
<td>Pregnancy</td>
<td>All ages</td>
<td>–</td>
<td>600</td>
</tr>
<tr>
<td>Breast-feeding</td>
<td>All ages</td>
<td>–</td>
<td>500</td>
</tr>
</tbody>
</table>

AI, adequate intake; DFE, dietary folate equivalent.
Immunity

Vitamin A is commonly known as the anti-infective vitamin, because it is required for normal functioning of the immune system. The skin and mucosal cells (cells that line the airways, digestive tract, and urinary tract) function as a barrier and form the body’s first line of defense against infection. Retinol and its metabolites are required to maintain the integrity and function of these cells. Vitamin A and RA play a central role in the development and differentiation of white blood cells, such as lymphocytes, which play critical roles in the immune response. Activation of T lymphocytes, the major regulatory cells of the immune system, appears to require all-trans-RA binding of RARs.

Growth and Development

Both vitamin A excess and deficiency are known to cause birth defects. Retinol and RA are essential for embryonic development. During fetal development, RA functions in limb development and formation of the heart, eyes, and ears. In addition, RA has been found to regulate expression of the gene for growth hormone.

Red Blood Cell Production

Red blood cells, similar to all blood cells, are derived from precursor cells called stem cells. Stem cells are dependent on retinoids for normal differentiation into red blood cells. In addition, vitamin A appears to facilitate the mobilization of iron from storage sites to the developing red blood cell for incorporation into hemoglobin, the oxygen carrier in red blood cells.

Nutrient Interactions

Zinc. Zinc deficiency is thought to interfere with vitamin A metabolism in several ways:
- Zinc deficiency results in decreased synthesis of retinol-binding protein (RBP), which transports retinol through the circulation to tissues (e.g., the retina) and also protects the organism against the potential toxicity of retinol.
- Zinc deficiency results in decreased activity of the enzyme that releases retinol from its storage form, retinyl palmitate, in the liver.
- Zinc is required for the enzyme that converts retinol into retinal.

At present, the health consequences of zinc deficiency on vitamin A nutritional status in humans are unclear.

Iron. Vitamin A deficiency may exacerbate iron-deficiency anemia. Vitamin A supplementation has beneficial effects on iron-deficiency anemia and improves iron nutritional status among children and pregnant women. The combination of supplemental vitamin A and iron seems to reduce anemia more effectively than either supplemental iron or vitamin A alone. Moreover, studies in rats have shown that iron deficiency alters plasma and liver levels of vitamin A.

Deficiency

Vitamin A Deficiency and Vision

Vitamin A deficiency among children in less developed nations is the leading preventable cause of blindness. The earliest evidence of vitamin A deficiency is impaired dark adaptation or night blindness. Mild vitamin A deficiency may result in changes in the conjunctiva (corner of the eye) called Bitot spots. Severe or prolonged vitamin A deficiency causes a condition called xerophthalmia (dry eye), characterized by changes in the cells of the cornea (clear covering of the eye) that ultimately result in corneal ulcers, scarring, and blindness.

Vitamin A Deficiency and Infectious Disease

Vitamin A deficiency can be considered a nutritionally acquired immunodeficiency disease. Even children who are only mildly deficient in vitamin A have a higher incidence of respiratory disease and diarrhea as well as a higher rate of mortality from infectious disease compared with children who consume sufficient vitamin A. Vitamin A supplementation has been found to decrease both the severity and the incidence of deaths related to diarrhea and measles in less developed countries, where vitamin A deficiency is common. The onset of infection reduces blood retinol levels very rapidly. This phenomenon is generally believed to be related to decreased synthesis of RBP by the liver. In this manner, infection stimulates a vicious cycle, because inadequate vitamin A nutritional status is related to increased severity and likelihood of death.
from infectious disease.18 However, a review of four studies concluded that vitamin A supplementation is not beneficial in reducing the mother-to-child transmission of HIV.19 One study found that HIV-infected women who were vitamin A deficient were three to four times more likely to transmit HIV to their infants.20

Recommended Dietary Allowance

The recommended dietary allowance (RDA) for vitamin A was revised by the Food and Nutrition Board (FNB) of the Institute of Medicine in 2001. The latest RDA is based on the amount needed to ensure adequate stores (4 months) of vitamin A in the body to support normal reproductive function, immune function, gene expression, and vision (Table 7.1).21

Disease Prevention

Cancer

Studies in cell culture and animal models have documented the capacity for natural and synthetic retinoids to reduce carcinogenesis significantly in skin, breast, liver, colon, prostate, and other sites.2 However, the results of human studies examining the relationship between the consumption of preformed vitamin A and cancer are less clear.

Lung cancer. At least 10 prospective studies have compared blood retinol levels at baseline among people who subsequently developed lung cancer and those who did not. Only one of those studies found a statistically significant inverse association between serum retinol and lung cancer risk.22 The results of the β-Carotene And Retinol Efficacy Trial (CARET) suggest that high-dose supplementation of vitamin A and β-carotene should be avoided in people at high risk of lung cancer.23 About 9000 people (smokers and people with asbestos exposure) were assigned a daily regimen of 25,000 IU retinol and 30 mg β-carotene, while a similar number of people were assigned a placebo. After four years of follow-up, the incidence of lung cancer was 28% higher in the supplemented group compared with the placebo group. A possible explanation for such a finding is that the oxidative environment of the lung, created by smoke or asbestos exposure, gives rise to unusual carotenoid cleavage products, which are involved in carcinogenesis. Currently, it seems unlikely that increased retinol intake decreases the risk of lung cancer, although the effects of retinol may be different for nonsmokers than for smokers.22

Breast cancer. Retinol and its metabolites have been found to reduce the growth of breast cancer cells in vitro, but observational studies of dietary retinol intake in humans have not confirmed this.24 Most epidemiological studies have failed to find significant associations between retinol intake and breast cancer risk in women,25–28 although one large prospective study found that total vitamin A intake was inversely associated

<table>
<thead>
<tr>
<th>Life stage</th>
<th>Age</th>
<th>Males µg/day (IU/day)</th>
<th>Females µg/day (IU/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infants</td>
<td>0–6 months</td>
<td>400 (1333 IU) (AI)</td>
<td>400 (1333 IU) (AI)</td>
</tr>
<tr>
<td>Infants</td>
<td>7–12 months</td>
<td>500 (1667 IU) (AI)</td>
<td>500 (1667 IU) (AI)</td>
</tr>
<tr>
<td>Children</td>
<td>1–3 years</td>
<td>300 (1000 IU)</td>
<td>300 (1000 IU)</td>
</tr>
<tr>
<td>Children</td>
<td>4–8 years</td>
<td>400 (1333 IU)</td>
<td>400 (1333 IU)</td>
</tr>
<tr>
<td>Children</td>
<td>9–13 years</td>
<td>600 (2000 IU)</td>
<td>600 (2000 IU)</td>
</tr>
<tr>
<td>Adolescents</td>
<td>14–18 years</td>
<td>900 (3000 IU)</td>
<td>700 (2333 IU)</td>
</tr>
<tr>
<td>Adults</td>
<td>≥19 years</td>
<td>900 (3000 IU)</td>
<td>700 (2333 IU)</td>
</tr>
<tr>
<td>Pregnancy</td>
<td>≤18 years</td>
<td>–</td>
<td>750 (2500 IU)</td>
</tr>
<tr>
<td>Pregnancy</td>
<td>≥19 years</td>
<td>–</td>
<td>770 (2567 IU)</td>
</tr>
<tr>
<td>Breast-feeding</td>
<td>≤18 years</td>
<td>–</td>
<td>1200 (4000 IU)</td>
</tr>
<tr>
<td>Breast-feeding</td>
<td>≥19 years</td>
<td>–</td>
<td>1300 (4333 IU)</td>
</tr>
</tbody>
</table>

AI, adequate intake.

18 Higdon, An Evidence-based Approach to Vitamins and Minerals (ISBN 9783131324528) © 2012 Georg Thieme Verlag KG
with the risk of breast cancer in premenopausal women with a family history of breast cancer. Blood levels of retinol reflect the intake of both preformed vitamin A and provitamin A carotenoids such as \(\beta \)-carotene. Although a case-control study found serum retinol levels and serum antioxidant levels to be inversely related to the risk of breast cancer, two prospective studies did not observe significant associations between blood retinol levels and subsequent risk of developing breast cancer. Currently, there is little evidence in humans that increased intake of preformed vitamin A or retinol reduces breast cancer risk.

Disease Treatment

Pharmacological Doses of Retinoids

Retinoids are used at pharmacological doses to treat several conditions, including retinitis pigmentosa, acute promyelocytic leukemia, and various skin diseases. It is important to note that treatment with high doses of natural or synthetic retinoids overrides the body’s own control mechanisms, so retinoid therapies are associated with potential side effects and toxicities. In addition, all of the retinoid compounds have been found to cause birth defects. Thus, women who have a chance of becoming pregnant should avoid treatment with these medications. Retinoids tend to be very long acting: side effects and birth defects have been reported to occur months after discontinuing retinoid therapy. The retinoids discussed below are prescription drugs and should not be used without medical supervision.

Retinitis pigmentosa. Retinitis pigmentosa describes a broad spectrum of genetic disorders that result in the progressive loss of photoreceptor cells (rods and cones) in the eye’s retina. Early symptoms of retinitis pigmentosa include impaired dark adaptation and night blindness, followed by the progressive loss of peripheral and central vision over time. The results of a randomized controlled trial in more than 600 patients with common forms of retinitis pigmentosa indicated that supplementation with 4500 \(\mu \)g (15 000 IU)/day of preformed vitamin A (retinol) significantly slowed the loss of retinal function over a period of four to six years. In contrast, supplementation with 400 IU/day of vitamin E increased the loss of retinal function by a small but significant amount, suggesting that patients with common forms of retinitis pigmentosa may benefit from long-term vitamin A supplementation but should avoid vitamin E supplementation at levels higher than those found in a typical multivitamin. Up to 12 years of follow-up in these patients did not reveal any signs of liver toxicity as a result of excess vitamin A intake. High-dose vitamin A supplementation to slow the course of retinitis pigmentosa requires medical supervision and must be discontinued if there is a possibility of pregnancy.

Acute promyelocytic leukemia. Normal differentiation of myeloid stem cells in the bone marrow gives rise to platelets, red blood cells, and white blood cells that are important for the immune response. Altered differentiation of those stem cells results in the proliferation of immature leukemic cells, giving rise to leukemia. A mutation of the RAR has been discovered in patients with a specific type of leukemia called acute promyelocytic leukemia (APL). Treatment with all-trans-RA or with high doses of all-trans-retinyl palmitate restores normal differentiation and leads to improvement in some APL patients.

Diseases of the Skin

Both natural and synthetic retinoids have been used as pharmacological agents to treat disorders of the skin. Etretinate and acitretin are retinoids that have been useful in the treatment of psoriasis, whereas tretinoin and isotretinoin have been used successfully to treat severe acne. Retinoids most likely affect the transcription of skin growth factors and their receptors. Use of pharmacological doses of retinoids by pregnant women causes birth defects.

Sources

Retinol Activity Equivalents

Different dietary sources of vitamin A have different potencies; for example, \(\beta \)-carotene is less easily absorbed than retinol and must be converted to retinal and retinol by the body. The most recent international standard of measure for vitamin A is retinol activity equivalents (RAE), which represent vitamin A activity as retinol:
2 µg β-carotene in oil provided as a supplement can be converted by the body to 1 µg retinol, giving it an RAE ratio of 2:1. However, 12 µg dietary β-carotene from foods are required to provide the body with 1 µg retinol, giving dietary β-carotene an RAE ratio of 12:1. Other provitamin A carotenoids in foods are less easily absorbed than β-carotene, resulting in RAE ratios of 24:1. The RAE ratios for β-carotene and other provitamin A carotenoids are shown in Table 7.2. An older international standard, still commonly used, is the international unit (IU): 1 IU is equivalent to 0.3 µg retinol.

Food Sources

Free retinol is not generally found in foods. Retinyl palmitate, a precursor and storage form of retinol, is found in foods from animals. Plants contain carotenoids, some of which are precursors for vitamin A (e.g., α-carotene, β-carotene, and β-cryptoxanthin). Yellow and orange vegetables contain significant quantities of carotenoids. Green vegetables also contain carotenoids, although the pigment is masked by the green pigment of chlorophyll. A number of good food sources of vitamin A are listed in Table 7.3 along with their vitamin A content in RA Es. In those foods where retinol activity comes mainly from provitamin A carotenoids, the carotenoid content and the RA Es are presented.

<table>
<thead>
<tr>
<th>Table 7.2</th>
<th>Retinol activity equivalent (RAE) ratios for β-carotene and other provitamin A carotenoids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity consumed</td>
<td>Quantity bioconverted to retinol</td>
</tr>
<tr>
<td>1 µg dietary or supplemental vitamin A</td>
<td>1 µg retinol</td>
</tr>
<tr>
<td>2 µg supplemental β-carotene</td>
<td>1 µg retinol</td>
</tr>
<tr>
<td>12 µg dietary β-carotene</td>
<td>1 µg retinol</td>
</tr>
<tr>
<td>24 µg dietary α-carotene</td>
<td>1 µg retinol</td>
</tr>
<tr>
<td>24 µg dietary β-cryptoxanthin</td>
<td>1 µg retinol</td>
</tr>
</tbody>
</table>

Table 7.3 | Food sources of vitamin A |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Food</td>
<td>Serving</td>
</tr>
<tr>
<td>Cod liver oil</td>
<td>1 teaspoon</td>
</tr>
<tr>
<td>Fortified breakfast cereals</td>
<td>1 serving</td>
</tr>
<tr>
<td>Egg</td>
<td>1 large</td>
</tr>
<tr>
<td>Butter</td>
<td>1 tablespoon</td>
</tr>
<tr>
<td>Whole milk</td>
<td>1 cup (8 fluid ounces)</td>
</tr>
<tr>
<td>2% fat milk (vitamin A added)</td>
<td>1 cup (8 fluid ounces)</td>
</tr>
<tr>
<td>Nonfat milk (vitamin A added)</td>
<td>1 cup (8 fluid ounces)</td>
</tr>
<tr>
<td>Sweet potato, canned</td>
<td>½ cup, mashed</td>
</tr>
<tr>
<td>Sweet potato, baked</td>
<td>½ cup</td>
</tr>
<tr>
<td>Pumpkin, canned</td>
<td>½ cup</td>
</tr>
<tr>
<td>Carrot, raw</td>
<td>½ cup, chopped</td>
</tr>
<tr>
<td>Cantaloupe</td>
<td>½ medium melon</td>
</tr>
<tr>
<td>Mango</td>
<td>1 fruit</td>
</tr>
<tr>
<td>Spinach</td>
<td>½ cup, cooked</td>
</tr>
<tr>
<td>Broccoli</td>
<td>½ cup, cooked</td>
</tr>
<tr>
<td>Kale</td>
<td>½ cup, cooked</td>
</tr>
<tr>
<td>Collards</td>
<td>½ cup, cooked</td>
</tr>
<tr>
<td>Squash, butternut</td>
<td>½ cup, cooked</td>
</tr>
</tbody>
</table>

RAE, retinol activity equivalent.
Index
Page numbers in italics refer to illustrations or tables

A
acetyl-CoA carboxylase 1
acetylation 26
acne 46
acrodermatitis enteropathica 225
acute promyelocytic leukemia (APL) 46
acyl-carrier protein 26
adequate intake (AI) 248
see also specific nutrients
adolescents
calcium recommendations 125
iodine deficiency 151
iron deficiency 159
ADP-ribosyl cyclases 17–18
adrenalglands 248
age-related macular degeneration (ARMD) treatment 246
zinc 229
AIDS 21, 248
treatment 246
selenium 209
zinc 229
alcohol interactions 40, 49, 241
alcoholism
folate deficiency and 8–9
magnesium deficiency and 170
thiamin deficiency and 36, 37
aldosterone 215
allele 248
allopurinol 241
Alzheimer disease 243, 248
prevention 243
folic acid 13
vitamin B₁₂ 54–55
vitamin B₁₂ 65–66
treatment 243
thiamin 38
vitamin E 100–101
amino acids 248
metabolism 8
analog 248
anaphylactic reactions 248
thiamin 39
anemia 32, 136, 248
hemolytic 257
hereditary 164
iron deficiency 159
macrocystic 259
megaloblastic 9, 62, 260
pernicious 60–61, 263
sickle cell 266
sideroblastic 266
anencephaly 248
angina pectoris 248
angiography 248
angiotensin 215
antacid interactions 140, 166, 184, 194, 239
anti-thiamin factors (ATFs) 37
anti-tuberculosis medications 57
antibiotic interactions 113, 230, 239
antibodies 248–249
anticoagulants 249
interactions 40, 78, 103, 113
anticonvulsants 249
interactions 14, 103, 231, 239
antidiuretic hormone (ADH) 215
tagens 249
antihistamine 249
apatitelet drug interactions 240
apoptosis 249
arginase 179
ariboflavinosis 31–32
ascorbate 77
see also vitamin C
ascorbylpalmitate 77
atrophic gastritis 61–62, 249
autimmune disease 249
prevention 243
vitamin D 89–90
bioavailability 250
biflavanoids 77
biotin 1–5
adequate intake 2, 2
bacterial synthesis 4
birth defects prevention 3
deficiency 1–2
disease treatment 3–4
brittle fingernails 3–4
diabetes mellitus 3
hair loss 4
drug interactions 5
food sources 4, 4
function 1
nutrient interactions 4–5, 236
recommendations 5
toxicity 4
biotin-deficient facies 2
brominidase deficiency 2
birth defects
prevention 247
biotin 3
folic acid 10–11
vitamin A and 48
bisphosphonate interactions 176, 240
Bitot spots 44
blood loss, iron deficiency and 159–160
blood pressure regulation
sodium chloride 215
vitamin D 84–85
see also hypertension
blood volume maintenance 215
body mass index (BMI) 250
bone development 179
bone mineral density (BMD) 250
fluoride and 143–144
magnesium and 172
potassium and 198
sodium chloride and 216–217
vitamin A effects 49
vitamin D role 87–88
vitamin K and 108, 110
see also osteoporosis
bone remodeling 115, 250
brain damage, iodine deficiency and 149, 150
breast cancer prevention 243
folic acid 12
vitamin A 45–46
vitamin B₁₂ 64–65
vitamin C 72
vitamin D 88–89
vitamin E 99

breast feeding
calcium recommendations 126
iodine deficiency and 151
vitamin D deficiency and 85
brittle fingernails, biotin treatment 3–4
buffer 250

C
caffeine, calcium balance and 117
calcidiol 83
see also vitamin D
calcification 250
phosphorus and 193–194
vascular 111–112
calcitriol 83, 115, 241
see also vitamin D
calcium 115–126
deficiency 116
disease prevention 118–121
colorectal cancer 118
kidney stones 119–120
lead toxicity 120–121
osteoporosis 118–119
pregnancy-induced hypertension 120
disease treatment 121
hypertension 121
premenstrual syndrome 121
drug interactions 124–125
function 115
lead levels in supplements 123
nutrient interactions 116–117, 125, 142, 147, 159, 170, 180, 224–225, 236–238
phosphorus role in calcium balance 117, 191, 192
prostate cancer risk and 124
RDA 116, 118
recommendations 125–126, 271
regulation 115, 116
sources 122–123, 122
tolerable upper intake level 123
toxicity 123
vitamin D role 83, 84
weight loss and 125
calcium channel blocker interactions 240
calmodulin 115
cancer 12, 243, 250
iron excess and 165–166
prevention 243
calcium 118
folic acid 12
niacin 19–20
selenium 206–208
vitamin A 45–46
vitamin B₁₂ 64–65
vitamin C 72–73
vitamin D 88–89
vitamin E 99
treatment 243
thiamin 39
vitamin C 75
vitamin E 101
see also specific types of cancer
carbohydrate 250
chromium interactions 128–129
carboxylation 250
osteocalcin 110
carcinogen 250
carcinoid syndrome 250
cardiomyopathy 250
cardiovascular diseases 250
iron excess and 165
prevention 244
chromium 130
copper 137–138
folic acid 11–12
magnesium 171
niacin 21
selenium 208–209
sodium chloride reduction 219
vitamin B₁₂ 53–54
vitamin B₂ 64
vitamin C 71–72
vitamin E 98
vitamin K 111–112
treatment 244
magnesium 173
vitamin C 74–75
vitamin E 99–100
carnitine 250, 271
carotenoids 42
carotid arteries 250
carpal tunnel syndrome treatment 56, 245
cartilage 250
case reports 251
case-control study 250–251
catabolism 251
cataract 251
prevention 245
riboflavin 33
thiamin 38
vitamin C 73
vitamin E 98–99
catecholamines 251
celiac disease 160, 245, 251
cell differentiation 83–84
cell membrane 251
membrane potential 196, 196, 214, 214
cell migration 169
cell signaling 115, 169, 251
cerebrovascular disease 251
ceruloplasmin 135, 136
cardiovascular disease and 137, 138
cervical intraepithelial neoplasia (CIN) 251
chemotherapy 251
children
calcium recommendations 125
iodine deficiency 151
iron deficiency 159
impaired intellectual development and 161
manganese susceptibility 184
zinc deficiency 226–227
diarrhea susceptibility and 227
effects on growth and development 226
malaria susceptibility and 227
pneumonia susceptibility and 227
chloramphenicol 241
chlorpromazine 176, 241
cholecalciferol 83, 91
see also vitamin D
cholestatic liver disease 251
cholesterol 251
lowering 246
niacin 21
pantethine 27–28
cholesterol 241
chorionic villous sampling (CVS) 251–252
chromatin 252
chromium 128–133
adequate intake 129, 130
deficiency 129
diabetes treatment 131–132
disease prevention 130
cardiovascular diseases 130
diabetes mellitus 130
drug interactions 133
function 128, 129
health claims 130–131
nutrient interactions 128–129, 236–237
recommendations 133
sources 132, 132
toxicity 132–133
chromosome 252
chronic disease 252
cirrhosis 252
clinical trial 252, 263
coagulation 252
calcium role 115
vitamin K role 107–108, 109
coenzyme 60
see also vitamin B₁₂
coenzyme 252
coenzyme A 26
cofactor 252
see also enzyme cofactors
cognitive impairment
prevention, folic acid 13
iron, in children 161
vitamin B₁₂ 54–55
treatment, vitamin E 100–101
see also dementia
cohort study 252
colchicine 241
colestipol 241
collagen 252
colon 252
colorectal cancer 252
 iron excess and 165–166
 prevention 243
 calcium 118
 folic acid 12
 vitamin D 88
common cold treatment 245
vitamin C 76
zinc 228
intranasal preparations 228, 230
lozenges 228
complement 252
congestive heart failure 244, 252
thiamin treatment 38–39
see also cardiovascular diseases
connective tissue formation, copper function 135
copeper 135–140
deficiency 136–137, 230
individuals at risk 137
prevention 137–139
vascular 269
see also Alzheimer disease
dental caries 142, 253
prevention 143, 245
dental fluorosis 142, 146–147
depletion–repletion study 253
depression 245
prevention 66, 245
treatment 56, 245
dermatitis 132, 253
diabetes mellitus 253–254
iron excess and 166
prevention 245
chromium 130
manganese 181
niacin 20
selenium 209
vitamin D 89
prevention 254
biotin 3
chromium 131–132
magnesium treatment 173–174
treatment 229
vitamin C 75–76
vitamin E 100
zinc 229
diabetic ketoacidosis 254
dialysis 100, 254
peritoneal 262–263
diabetes 44, 175, 227
diastolic blood pressure 254
dietary folate equivalents (DFEs) 9–10
dietary reference intake (DRI) 254
diethylenetriaminepentaacetate (DPTA) 241
digoxin 241
diuretic 254
interactions 40, 231, 240
diuretic 254
dNA 254
damage 132–133
metabolism 7
methylation 63
synthesis 158
transcription 268
double blind 254
doxorubicin 241
DEXA 253

E
echocardiography 254
eclampsia 32, 247
magnesium treatment 172–173, 247
ecological study 254
eyeconenchoencephalogram (EEG) 254
electrolytes 254
electron transport 157, 255
endoctrine system 255
endothelial dysfunction, magnesium treatment 173
energy metabolism 157
energy production 135, 169
enzyme 255
enzyme cofactors
biotin 1
calium 115
potassium 196
vitamin B12 60
epilepsy 255
see also seizure
ergocalciferol 83
see also vitamin D
erythropoietin 255
esophagus 255
see also gastroesophageal cancer
estimated average requirement (EAR) 254
estrogen 52, 255
see also oral contraceptives

F
familial adenomatous polyposis 255
fatty acid 255
ferritin 158, 165, 256
ferrooxidase 135
fetal development
folic acid benefits 10–11, 15
iodine deficiency 150
vitamin A and 44, 48
see also pregnancy
fiber, magnesium status and 169
fibroelastic breast condition 255
iodine treatment 152–153
fish oil 271
flavin adenine dinucleotide (FAD) 30, 31
flavin mononucleotide (FMN) 30
flavocoenzymes 30
flavoproteins 30
fluoride (fluorine) 142–147
adequate intake 142, 143
adverse effects 146–147
deficiency 142
disease prevention 143–144
dental caries 143
osteoporosis 143–144
drug interactions 147
function 142
nutrient interactions 142, 237
osteoporosis treatment 144
recommendations 147
sources 145–146, 145, 146
fluorosis 142, 146–147
skeletal 147
5-fluorouracil 24, 241
folic acid 7–15
deficiency 8–9, 62
dietary folate equivalents (DFEs) 9–10
disease prevention 10–13
Alzheimer disease and cognitive impairment 13
cancer 12
cardiovascular diseases 11–12
pregnancy complications 10–11, 15
drug interactions 14–15
function 7–8, 7
genetic variation in requirements 10
nutrient interactions 8, 225, 236
RDA 9, 9
recommendations 15
sources 13, 14
toxicity 14
food-bound vitamin B12 malabsorption 61
fortification 255
fractures see osteoporosis
free radical 255
fructose 256
copper interaction 136
phosphorus interaction 191
function 7–8, 7

G
g-proteins 17
gallbladder 256
gallstones 256
Gas6 protein 108
gastric bypass surgery 160
gastric cancer 243
salt consumption and 216
gastroesophageal cancer 243
molybdenum 188–189
gastroesophageal reflux disease (GERD) 256
gene expression 256
copper role 136
retinoic acid role 43, 43
gestation 256
see also pregnancy
gestation diabetes 247
chromium supplementation 131–132
glucose 256
glucose tolerance impairment 258
chromium and 128, 130
see also diabetes mellitus
glucoside 256
glutamate 179
glutamine synthetase 179
glutathione 256
gluthione peroxidase 30, 203, 203
glutathione reductase 30, 203
glycogen 256
glycine 256
glycine 256
glycosyltransferases 179
goiter 149, 151, 154, 256
vitamin E and 102–103
hepatitis 257
liver cancer and 207
niacin and 22–23
hepatocellular carcinoma 165, 257
hepatotoxicity, niacin 22–23
hepcidin 158
hereditary hemochromatosis 164, 257
hereditary spherocytosis 257
histone 257
biontinylation 1
HIV infection 257
treatment 246
niacin 21
selenium 209
zinc 229
vitamin A effects on transmission 45
HMG-CoA reductase inhibitors see statins
holocarboxylase synthetase (HCS) 1
deficiency 2
homocysteine 8, 31, 244, 257
Alzheimer disease and 65–66
cardiovascular diseases and 11–12, 53–54, 64
metabolism 8, 8, 54, 61
homopantothenate 26
hormone 257
hydrolysis 257
hydroxypatite 115, 142, 191, 257
hydroxylation 257
hypercalcemia 91–92, 123
hypercalciuria 123, 198–199
hypercholesterolemia 21, 27–28, 246
hyperglycemia 257
hyperkalemia 194–195, 200, 201
zinc deficiency and 226
GTP (guanosine triphosphate) 257

H
H2-receptor antagonist interactions 166, 240
hair loss, biotin and 1, 4
hallucination 2
Hartnup disease 19, 257
health eating 270
healthy lifestyle 270
heart disease see cardiovascular diseases
Helicobacter pylori infection 62, 72–73, 160, 216
heme 257
hemodialysis 257
hemoglobin 52, 157, 159, 257
glycated 256
hemolysis 97, 257
hemorrhage 257
vitamin E and 102–103
hepatitis 257
liver cancer and 207
niacin and 22–23
hepatocellular carcinoma 165, 257
hepatotoxicity, niacin 22–23
hepcidin 158
hereditary hemochromatosis 164, 257
hereditary spherocytosis 257
histone 257
biontinylation 1
HIV infection 257
treatment 246
niacin 21
selenium 209
zinc 229
vitamin A effects on transmission 45
HMG-CoA reductase inhibitors see statins
holocarboxylase synthetase (HCS) 1
deficiency 2
homocysteine 8, 31, 244, 257
Alzheimer disease and 65–66
cardiovascular diseases and 11–12, 53–54, 64
metabolism 8, 8, 54, 61
homopantothenate 26
hormone 257
hydrolysis 257
hydroxypatite 115, 142, 191, 257
hydroxylation 257
hypercalcemia 91–92, 123
hypercalciuria 123, 198–199
hypercholesterolemia 21, 27–28, 246
hyperglycemia 257
hyperkalemia 194–195, 200, 201
zinc deficiency and 226
GTP (guanosine triphosphate) 257

H
H2-receptor antagonist interactions 166, 240
hair loss, biotin and 1, 4
hallucination 2
Hartnup disease 19, 257
health eating 270
healthy lifestyle 270
heart disease see cardiovascular diseases
Helicobacter pylori infection 62, 72–73, 160, 216
heme 257
hemodialysis 257
hemoglobin 52, 157, 159, 257
glycated 256
hemolysis 97, 257
hemorrhage 257
vitamin E and 102–103
hepatitis 257
liver cancer and 207
niacin and 22–23
hepatocellular carcinoma 165, 257
hepatotoxicity, niacin 22–23
hepcidin 158
hereditary hemochromatosis 164, 257
hereditary spherocytosis 257
histone 257
biontinylation 1
HIV infection 257
treatment 246
niacin 21
selenium 209
zinc 229
immune function 246

copper role 138–139
iron role 161–162
selenium role 206
vitamin A role 44
vitamin B₆ role 54
vitamin C role 74
vitamin D role 84
vitamin E role 99

infectious disease
iron and 161–162
selenium protective role 206
vitamin A protective role 44
deficiency effects 44–45
zinc and, children 227
diarrhea 227
malaria 227
pneumonia 227
see also immune function;
specific diseases

inflammation 258
inflammatory bowel disease 258
vitamin D deficiency and 86
insulin 258
chromium function 128, 129
resistance 258
secretion 84
insulin-like growth factor-1 (IGF-1) 118
intervention trial 258
iodine 149–155
deficiency 149–150
developmental stage and 150–151
individuals at risk 152
drug interactions 154–155
fibrocystic breast condition treatment 152–153
function 149
nutrient interactions 151–152, 204, 236–238
radiation-induced thyroid cancer prevention 152
RDA 151, 152
recommendations 155
sources 153, 153
tolerable upper intake level 154
toxicity 153–154
iodine-induced hyperthyroidism (IHH) 154
iodothyronine deiodinases 204
ion channel 258
ion transport 169
iron 157–166
copper role in iron metabolism 135
deficiency 159
individuals at risk 159–160
symptoms 159
disease prevention 161–162
immune function 161–162
impaired intellectual development 161

lead toxicity 161
pregnancy complications 161
diseases associated with iron excess 165–166
cancer 165–166
cardiovascular diseases 165
diabetes and metabolic syndrome 166
neurodegenerative disease 166
drug interactions 166
function 157–158
antioxidant and prooxidant functions 157
DNA synthesis 158
electron transport and energy metabolism 157
oxygen sensing 157
oxygen transport and storage 157
nonheme iron absorption 162–163
enhancers 162
inhibitors 163
nutrient interactions 31, 44, 125, 128, 136, 158–159, 179–180, 224, 236–238
overload 164
RDA 160, 160
recommendations 166, 270
regulation 158
restless legs syndrome treatment 162
sources 162–163, 163
tolerable upper intake level 165
toxicity 164–165
iron regulatory proteins (IRPs) 158
isoniazid 24, 241

jaundice 259

K

Kashin–Beck disease 205
Keshan disease 205
ketonazol 241
ketone bodies 259
kidney failure 133
kidney stones 259
prevention 246
calcium 119–120
potassium 198–199
vitamin B₆ 55
sodium and 217
vitamin C and 78
Korsakoff psychosis 36

L

L-carnitine 271
lactation see breast feeding
laxative interactions 184, 240

lead in calcium supplements 123
toxicity prevention 246
calcium 120–121
iron 161
vitamin C 73–74
left ventricular hypertrophy (LVH) 259
lethargy 2
leukemia 243, 259
acute promyelocytic (APL) 46
childhood, vitamin K relationship 109
leukocytes 259
levodopa 241
levothyroxine 241
licorice 197
lipids 259
peroxidation 259
lipoic acid 259, 271
lipoproteins 259
lithium 242
liver disease
biotin deficiency and 2

cancer
hepatitis infection and 207
iron excess and 165
selenium protective effect 207–208
cholestatic 251
manganese susceptibility and 183
lovastatin 242
niacin interaction 23
see also statins
low birth weights 11
lung cancer 132
prevention 243
selenium 207
vitamin A 45
vitamin C 72
vitamin E 99
lymphocytes 259
lysyl oxidase 139

M

macular degeneration 246
zinc treatment 229
magnesium 169–176
deficiency 116, 170
disease prevention 170–172
cardiovascular diseases 171
hypertension 170–171
osteoporosis 171–172
disease treatment 172–174
asthma 174
cardiovascular diseases 173
diabetes mellitus 173–174
hypertension 172
migraine headaches 174
pre-eclampsia and eclampsia 172–173
drug interactions 176
function 169
nutrient interactions 125, 142, 169–170, 180, 236–238
RDA 170, 171
recommendations 176, 271
sources 174–175, 175
tolerable upper intake level 175
toxicity 175–176
malabsorption syndrome 62, 260
malaria 260
susceptibility in children, zinc and 227
manganese 179–184
adequate intake 180, 180
deficiency 180
disease prevention 180–181
diabetes mellitus 181
osteoporosis 181
seizure disorders 181
drug interactions 184
function 179
individuals with increased susceptibility 183–184
nutrient interactions 179–180, 237–238
recommendations 184
sources 181–182, 182
tolerable upper intake level 184
toxicity 182–183
ingested manganese 183
inhaled manganese 182–183
intravenous manganese 183
methylcyclopentadienyl manganese tricarboxyl
(MMT) 183
manganese superoxide dismutase (MnSOD) 179
manganism 182
matrix Gla protein (MGP) 108
melanin formation, copper function 135
membrane potential 214, 260
potassium function 196, 196
sodium chloride function 214, 214
menaquinones 107, 112
see also vitamin K
Menkes disease 138
menstruation 260
meta-analysis 260
metabolic syndrome 260
iron excess and 166
metabolism 260
metabolite 260
metallothionein 136, 224
metformin 242
methionine 8, 260
methionine synthase 60
impaired activity 62
methionine-R-sulfoxide reductase 204
methotrexate 242
folic acid interaction 14
methylthionine 136
methylcrotonyl-CoA carboxylase 1
methylcyclopentadienyl manganese tricarboxyl (MMT) 183
methyldopa 242
methylene tetrahydrofolate reductase (MTHFR) 31, 31
polymorphism 10, 12, 31
methylmalonic acid (MMA) 62
methylmalonyl-CoA mutase 60
impaired activity 62
migraine headache 260
treatment 246
magnesium 174
riboflavin 33
milk alkalai syndrome 123
mineral 260
miscarriage 11
mitochondria 260–261
molybdenum 187–190
deficiency 187–188
drug interactions 189
function 187
gastroesophageal cancer prevention 188–189
nutrient interactions 187
RDA 188, 188
recommendations 190
sources 189
tolerable upper intake level 189
toxicity 189
mono-ADP-ribosyltransferases 17
multiple sclerosis (MS) 261
prevention 247
vitamin D 89–90
multivitamin supplements 270
muscle mass 130–131
mutation 261
myelins 261
copper function 135
myocardial infarction 261
prevention 245
treatment 245
magnesium 173
see also cardiovascular diseases
myocarditis 261
myoglobin 157, 159, 261
neutropenia 136, 138
neurophil s 9, 261
newborn infants
iodine deficiency 150–151
manganese susceptibility 183–184
vitamin K deficiency 109
niacin 17–24, 17
deficiency 18
causes of 19
disease prevention 19–20
cancer 19–20
diabetes (type 1) 20
disease treatment 21
cardiovascular disease 21
HIV infection 21
drug interactions 23–24
formation 52
function 17–18
HIV infection and 21
nutrient interactions 19, 236
RDA 19, 19
recommendations 24
sources 22, 22
tolerable upper intake level 23
toxicity 22–23
nicotinamide
insulin sensitivity and 20, 23
toxicity 23
nicotinamide adenine dinucleotide (NAD) 17, 31
cancer and 19–20
synthesis 18
nicotinamide adenine dinucleotide phosphate (NADP) 17, 31
nitric acid see niacin
nitric oxide 67, 242
nonsteroidal anti-inflammatory drug (NSAID) interactions 14, 103, 240
nucleic acids 261
metabolism 7, 7
synthesis 52, 63
see also DNA; RNA
nucleotides 262
nutrient absorption 215

N
natural killer (NK) cells 261
nausea and vomiting in pregnancy treatment 56, 247
necrosis 261
neomycin 242
neural tube defect (NTD) 261
prevention 247
folic acid 9, 10
vitamin B12 65
neurodegenerative disease 261
iron and 166
neurotransmitters 261
copper function 135

O
obesity 262
vitamin D deficiency and 86
older adults, recommendations
biotin 5
chromium 133
copper 140
fluoride 147
folic acid 15
iodine 155
iron 166
magnesium 176
manganese 184
molybdenum 190
niacin 24
pantothenic acid 29
phosphorus 195
potassium 201
riboflavin 35
selenium 211
sodium chloride 221
thiamin 40
vitamin A 49
vitamin B6 58
vitamin B12 68
vitamin C 79
vitamin D92
vitamin B6 58
vitamin B12 68
vitamin C 79
vitamin K 113
zinc 231

immune function and 227
oral contraceptives interactions 15, 24, 29, 34, 240
side effects treatment 55
orlistat 242
osteoblasts 116, 262
osteocalcin 108
vitamin K-dependent carboxylation 110
osteoclasts 115
osteomalacia 85, 262
osteoporosis 115, 262
copper and 136–137, 139
prevention 246
calcium 118–119
copper 139
fluoride 143–144
manganese 181
potassium 198
vitamin D87–88
vitamin K 110–111
sodium chloride and 216–217
treatment 246
vitamin A and 49
oxalate 122
oxidation–reduction reactions 17, 30, 30, 265
oxygen sensing 157
oxygen transport and storage 157

P

Pancreas 262
pantethine 27–29
pantothenic acid 26–29
adequate intake 27, 27
deficiency 26–27
disease treatment 27–28
drug interactions 29
function 26
nutrient interactions 236
recommendations 29
sources 28, 28
toxicity 28–29
parathyroid glands 262

parathyroid hormone (PTH) 115
magnesium deficiency and 170
phosphorus and 191–192
Parkinson disease 262
pellagra 18
penicillamine 140, 231, 242
peptic ulcer disease 262
peripheral neuropathy 36, 97, 262
peripheral vascular disease 262
pernicious anemia 60–61
phenothiazine derivative interactions 240
phenylketonuria (PKU) 263
phenytoin 242
phlebotomy 263
phosphorus 191–195
bone health and 191–192
calcium balance and 117, 191, 192
deficiency 192
drug interactions 194–195
function 191
nutrient interactions 191–192, 238
RDA 193, 193
recommendations 195
sources 193, 194
tolerable upper intake level 194
toxicity 193–194
phosphorylation 263
phyloquinone 107, 112
see also vitamin K
phytic acid 122, 163
pituitary 263
placebo 263
placenta 263–264
placental abruption 11, 264
plasma 264
Plasmodium falciparum 227
Plummer-Vinson syndrome 159
placental abruption 11, 264
disease prevention 197–199
kidney stones 198–199
osteoporosis 198
stroke 197–198
drug interaction 201, 201
function 196
hypertension treatment 199
nutrient interactions 238
recommendations 201
sources 199–200, 200
toxicity 200
adverse reaction to supplements 200
potassium iodide 153
pre-eclampsia 32, 264
prevention 247
calcium 120
folate 11
riboflavin deficiency and 32
treatment 247
magnesium 172–173
pregnancy 246–247
biotin deficiency and 2, 3
calcium recommendations 126
folic acid benefits 10–11, 15
gestational diabetes 131–132
iodine deficiency 151
iron deficiency 159
pregnancy complications and 161
nausea and vomiting treatment 56
pregnancy-induced hypertension, calcium and 120
vitamin A safety 48–49
zinc deficiency 227–228
premature delivery 11
premenstrual syndrome (PMS) treatment
calcium 121
vitamin B6 55–56, 247
procoxi dant 264
iron function 157
propanoyl-CoA carboxylase 1
prostaglandins 208, 264
prostate 264
prostate cancer
calcium and 124
prevention 243
selenium 207, 208
vitamin D89
vitamin E 99
prostate-specific antigen (PSA) 264
protein 264
acetylation 26
calcium balance and 117, 237
magnesium absorption and 169
protein S 108
proteoglycan 264–265
proton pump inhibitor interactions 166, 240
psoriasis 46, 265
pyridoxal 5'-phosphate (PLP) 52
see also vitamin B6
pyridoxine glucoside 56
pyruvate carboxylase 1, 179
pyruvate kinase deficiency 265

Q

Quinacrine 242

R

R proteins 60
radiation-induced thyroid cancer prevention 152

Index 279

randomized controlled trial (RCT) 265
RDA (recommended dietary allowance) 265
see also specific nutrients
reactive nitrogen species 265
reactive oxygen species (ROS) 157, 265
see also antioxidants
receptor 265
red blood cell production
vitamin A role 44
vitamin B6 role 52
redox reactions 17, 30, 30, 265
renal dialysis 100, 254
renin–angiotensin–aldosterone system 215
resorption 265
response element 265
restless legs syndrome (RLS) 162, 247
retina 42, 265
retinal 42
retinitis pigmentosa 46, 97
retinoic acid (RA) 42, 44
gene expression regulation 43, 43
retinoic acid response elements (RAREs) 43
retinoids 42
drug interactions 240
pharmacological doses 46
see also vitamin A
retinol 42–43, 44
breast cancer and 45–46
see also vitamin A
retinol activity equivalents (RAE) 46–47
retrospective study 266
rhabdomyolysis 23
rheumatoid arthritis (RA) 266
prevention 247
vitamin D90
riboflavin 30–35
scorbutic 33
deficiency 31–32
risk factors 32
drug interactions 34
function 30
migraine treatment 33
nutrient interactions 31, 236–237
RDA 32, 32
recommendations 34–35
sources 34, 34
toxicity 34
ribonucleotide 266
rickets 85, 266
rifampin 242
RNA 266
translation 268
S
S-adenosylmethionine (SAM) 7, 66
salt see sodium chloride
scurvy 70, 266
seizure 266
prevention 247
manganese and 181
vitamin B6 deficiency and 52–53
selenium 203–211
deficiency 205
individuals at increased risk 205
disease prevention 206–209
cancer 206–208
vascular diseases 208–209
diabetes mellitus 209
immune function 206
viral infection 206
drug interactions 211
function 203–204
HIV/AIDS treatment 209
nutrient interactions 151, 204, 236–238
RDA 205, 206
recommendations 211
sources 209–210, 210
toxicity 210–211
sodium chloride 214–215
blood volume and pressure 215
membrane potential 214
nutrient absorption 215
nutrient interactions 237, 238
recommendations 221
sources 219, 220
tolerable upper intake level 221
toxicity 219–220
soy protein, iron absorption and 163
spina bifida 266
spleen 266–267
statins
antioxidant interactions 78–79, 211
niacin interactions 23
vitamin E interaction 104–105
steroid 267
steroid hormone receptor 267
steroid hormones 52
stomach cancer prevention, vitamin C 72–73
stroke 267
hemorrhagic 257
ischemic 258
prevention 245, 247
potassium 197–198
vitamin C 72
see also cardiovascular diseases
sucralfate 242
sulfasalazine 242
sulfapyrazone 23–24, 242
sulfite oxidase 187
deficiency 187–188
sunlight, as vitamin D source 90
superoxide dismutase (SOD) 135–136
systematic review 267
systolic blood pressure 267
T
Tannins 267
testosterone 52
tetany 267
thalassemia major 164
minor 164, 268
thiamin 36–40
cataract prevention 38
deficiency 36–37
causes of 37
disease treatment 38–39
Alzheimer disease 38
cancer 39
congestive heart failure 38–39
drug interactions 40
function 36
RDA 37, 38
recommendations 40
sources 39, 40
toxicity 39

281

<table>
<thead>
<tr>
<th>Index</th>
<th>281</th>
</tr>
</thead>
<tbody>
<tr>
<td>thiomolybdates 187</td>
<td>vitamin A 42–49</td>
</tr>
<tr>
<td>thioredoxin reductase 203</td>
<td>bone mineral density (BMD) effects 49</td>
</tr>
<tr>
<td>threshold 268</td>
<td>cancer prevention 45–46</td>
</tr>
<tr>
<td>thyroid 268</td>
<td>deficiency 44–45</td>
</tr>
<tr>
<td>function 149, 150</td>
<td>disease treatment 46</td>
</tr>
<tr>
<td>thyroid cancer 154</td>
<td>drug interactions 49</td>
</tr>
<tr>
<td>follicular 268</td>
<td>function 42–44</td>
</tr>
<tr>
<td>papillary 268</td>
<td>gene expression regulation 43, 43</td>
</tr>
<tr>
<td>prevention 243</td>
<td>growth and development 44</td>
</tr>
<tr>
<td>iodine 152</td>
<td>immunity 44</td>
</tr>
<tr>
<td>thyroid hormones 149</td>
<td>red blood cell production 44</td>
</tr>
<tr>
<td>deiodinases 204</td>
<td>vision 42–43, 43</td>
</tr>
<tr>
<td>thyroid-stimulating hormone (TSH) 149, 154</td>
<td>nutrient interactions 44, 112–113, 158, 225, 236–238</td>
</tr>
<tr>
<td>thyrotropin-releasing hormone (TRH) 149</td>
<td>RDA 45, 45</td>
</tr>
<tr>
<td>tocopherol 96</td>
<td>recommendations 49, 270</td>
</tr>
<tr>
<td>alpha-tocopherol 96, 99</td>
<td>safety in pregnancy 48–49</td>
</tr>
<tr>
<td>supplements 102</td>
<td>sources 46–48, 47</td>
</tr>
<tr>
<td>gamma-tocopherol 96–97</td>
<td>tolerable upper intake level 48</td>
</tr>
<tr>
<td>supplements 102</td>
<td>toxicity 48</td>
</tr>
<tr>
<td>see also vitamin E</td>
<td>vitamin B1 see thiamin</td>
</tr>
<tr>
<td>tolerable upper intake level (UL) 268–269</td>
<td>vitamin B2 see riboflavin</td>
</tr>
<tr>
<td>vitamin A function 42–43</td>
<td>vitamin B3 see niacin</td>
</tr>
<tr>
<td>deficiency 44–45</td>
<td>vitamin B5 see pantothenic acid</td>
</tr>
<tr>
<td>vitamin B6 52–58</td>
<td>vitamin B9 52–58</td>
</tr>
<tr>
<td>deficiency 52–53</td>
<td>disease prevention 53–55</td>
</tr>
<tr>
<td>cardiovascular diseases 53–54</td>
<td>cognitive function 54–55</td>
</tr>
<tr>
<td>immune function 54</td>
<td>kidney stones 55</td>
</tr>
<tr>
<td>disease treatment 55–56</td>
<td>nausea and vomiting in pregnancy 56</td>
</tr>
<tr>
<td>carpal tunnel syndrome 56</td>
<td>oral contraceptive side effects 55</td>
</tr>
<tr>
<td>depression 56</td>
<td>premenstrual syndrome 55–56</td>
</tr>
<tr>
<td>disease prevention 53–55</td>
<td>drug interactions 57</td>
</tr>
<tr>
<td>cardiovascular diseases 53–54</td>
<td>function 52</td>
</tr>
<tr>
<td>immune function 54</td>
<td>nutrient interactions 31, 236</td>
</tr>
<tr>
<td>kidney stones 55</td>
<td>RDA 53, 53</td>
</tr>
<tr>
<td>disease treatment 55–56</td>
<td>recommendations 57–58</td>
</tr>
<tr>
<td>vitamin B12 60–68</td>
<td>sources 56–57, 56</td>
</tr>
<tr>
<td>deficiency 60–62</td>
<td>tolerable upper intake level 57</td>
</tr>
<tr>
<td>causes 60–62</td>
<td>toxicity 57</td>
</tr>
<tr>
<td>symptoms 62</td>
<td>vitamin B12 60–68</td>
</tr>
<tr>
<td>disease prevention 64–66</td>
<td>deficiency 60–62</td>
</tr>
<tr>
<td>cancer 64–65</td>
<td>causes 60–62</td>
</tr>
<tr>
<td>cardiovascular diseases 64</td>
<td>symptoms 62</td>
</tr>
<tr>
<td>dementia 65–66</td>
<td>disease prevention 64–66</td>
</tr>
<tr>
<td>depression 66</td>
<td>cancer 64–65</td>
</tr>
<tr>
<td>neural tube defects 65</td>
<td>cardiovascular diseases 64</td>
</tr>
<tr>
<td>drug interactions 67</td>
<td>dementia 65–66</td>
</tr>
<tr>
<td>folic acid interaction 14</td>
<td>depression 66</td>
</tr>
<tr>
<td>function 60</td>
<td>neural tube defects 65</td>
</tr>
<tr>
<td>nutrient interactions 236</td>
<td>drug interactions 67</td>
</tr>
<tr>
<td>RDA 63, 63</td>
<td>folic acid interaction 14</td>
</tr>
<tr>
<td>recommendations 67–68</td>
<td>function 60</td>
</tr>
<tr>
<td>sources 66–67, 66</td>
<td>toxicity 67</td>
</tr>
<tr>
<td>vitamin C 70–79</td>
<td>deficiency 70</td>
</tr>
<tr>
<td>disease prevention 70–74</td>
<td>cancer 72–73</td>
</tr>
<tr>
<td>cardiovascular diseases 71–72</td>
<td>cataracts 73</td>
</tr>
<tr>
<td>gout 73</td>
<td>lead toxicity 73–74</td>
</tr>
<tr>
<td>role in immunity 74</td>
<td>disease treatment 74–76</td>
</tr>
<tr>
<td>cancer 75</td>
<td>cardiovascular diseases 74–75</td>
</tr>
<tr>
<td>diabetes mellitus 75–76</td>
<td>common cold 76</td>
</tr>
<tr>
<td>drug interactions 78–79</td>
<td>function 70</td>
</tr>
<tr>
<td>nutrient interactions 128, 136, 162, 236–238</td>
<td>RDA 70, 71</td>
</tr>
<tr>
<td>recommendations 79, 270</td>
<td>sources 76–77, 76</td>
</tr>
<tr>
<td>tolerable upper intake level 77</td>
<td>toxicity 77</td>
</tr>
<tr>
<td>kidney stones 78</td>
<td>with bioflavanoids 77</td>
</tr>
<tr>
<td>oxidative damage promotion 78</td>
<td>vitamin D3–92</td>
</tr>
<tr>
<td>activation 83</td>
<td>risk factors 85–86</td>
</tr>
<tr>
<td>deficiency 85</td>
<td>disease prevention 87–90</td>
</tr>
<tr>
<td>vascular calcification 111–112</td>
<td>autoimmune disease 89–90</td>
</tr>
<tr>
<td>vasodilation, vitamin C treatment 74</td>
<td>cancer 88–89</td>
</tr>
<tr>
<td>vegetarians</td>
<td>hypertension 90</td>
</tr>
<tr>
<td>iron deficiency 160</td>
<td>osteoporosis 87–88</td>
</tr>
<tr>
<td>zinc deficiency 225</td>
<td>drug interactions 92</td>
</tr>
<tr>
<td>venous thromboembolism, vitamin E and 98</td>
<td>function 83</td>
</tr>
<tr>
<td>virus 269</td>
<td>blood pressure regulation 84–85</td>
</tr>
<tr>
<td>viral infection 206</td>
<td>calcium balance 83, 84, 116</td>
</tr>
<tr>
<td>vision 42, 42</td>
<td>cell differentiation 83–84</td>
</tr>
<tr>
<td>vitamin A function 42–43</td>
<td>immunity 84</td>
</tr>
<tr>
<td>deficiency effects 44</td>
<td>insulin secretion 84</td>
</tr>
<tr>
<td>vitamin 269</td>
<td>mechanisms of action 83</td>
</tr>
<tr>
<td>nutrient interactions 170, 191, 236–238</td>
<td>nutritional status assessment 86</td>
</tr>
<tr>
<td>RDA 86, 87</td>
<td>recommendations 92, 270</td>
</tr>
<tr>
<td>sources 90–91, 91</td>
<td>tolerable upper intake level 91</td>
</tr>
<tr>
<td>tolerable upper intake level 91</td>
<td>toxicity 91–92</td>
</tr>
<tr>
<td>vitamin D receptor (VDR) 83, 85</td>
<td>vitamin D response elements (VDREs) 83</td>
</tr>
</tbody>
</table>

vitamin E 96–104
deficiency 97
disease prevention 98–99
cancer 99
cardiovascular diseases 98
cataracts 98–99
immune function 99
disease treatment 99–101
cancer 101
immunofunction 99
cardiovascular diseases 99–100
dementia 100–101
diabetes mellitus 100
drug interactions 103–104
function 96–97
alpha-tocopherol 96, 99
gamma-tocopherol 96–97
nutrient interactions 112–113, 236–238
RDA 97, 98
recommendations 104, 270
sources 101–102, 101
supplementation related to
mortality 103
tolerable upper intake level 103
toxicity 102–103
vitamin K 107–113
adequate intake 109, 110
childhood leukemia and 109
deficiency 109
disease prevention 110–112
cardiovascular disease 111–112
osteoporosis 110–111
drug interactions 113
function 107–108
bone mineralization 108
cell growth 108
cogulation 107–108
nutrient interactions 112–113, 236–237
premature infant doses 109
recommendations 113
sources 112, 112
toxicity 112
warfarin interaction 107, 108

W
warfarin 242
fracture risk and 110–111
interactions 78, 103, 107, 108, 110–111, 113
water fluoridation 145
weight loss
calcium and 125
chromium and 131
Wernicke encephalopathy 36
Wernicke–Korsakoff syndrome
(WKS) 36–37
Wilson disease 140
wound healing 27, 179

X
xanthine oxidase 30, 187
xerophthalmia 44

Z
zinc 224–231
deficiency 225
individuals at risk 225
disease prevention 226–228
immune function in elderly people 227
impaired growth and development 226
infectious disease in children 227
pregnancy complications 227–228
disease treatment 228–229
age-related macular degeneration 229
common cold 228
diabetes mellitus 229
HIV/AIDS 229
drug interactions 230–231
function 224
nutrient interactions 44, 136, 158, 169, 224–225, 236–238
RDA 226, 226
recommendations 231
sources 229–230, 231
tolerable upper intake level 230
toxicity 230
zinc finger motif 224
Zollinger–Ellison syndrome 269