Foreword

Since the early beginning of orthodontics, clinicians have progressively produced modifications and enhancements to improve force delivery of the appliances and clinician’s efficiency. Major advances since the last century included the development by Dr. Angle of the Edgewise appliance, the introduction of enamel direct and indirect bonding techniques, the advent of the Preadjusted Straight Wire appliances and the development of fully customized Lingual Appliances (IBraces or Incognito). In the last 10 years, self-ligating appliances have captured the imagination of many clinicians and are increasing in popularity. Those brackets have been developed to overcome the limitations of stainless steel and elastomeric ligatures in terms of ergonomics, efficiency, plastic deformation, discoloration, plaque accumulation, and friction.

A self-ligating bracket is a ligature-less system with a mechanical device built in to close off the edgewise slot. Secure engagement may be produced by a built-in clip mechanism replacing the stainless steel or elastomeric ligature. Both active and passive self-ligating brackets have been manufactured, referring to the bracket/archwire interaction. The active type has a spring clip that presses against the archwire. In the passive type, the clip or rigid door does not actively press against the archwire.

Active self-ligating appliances may allow better torque control with undersize archwires than can be achieved with passive appliances; a spring clip might also enhance the potential for bucco-lingual alignment. The resistance to sliding is thought to be lower for passive appliances, however, which may improve the aligning capability of these systems. Self-ligating systems outperform conventional brackets in the in-vitro situation, producing considerably less friction within the appliance systems, but this effect is less marked in-vivo. Clinical data documenting the efficiency of rotational correction and space closure with self-ligating systems remain limited. Use of self-ligating brackets results in a marginal reduction in chairtime required for appliance manipulation. Also, there is limited, retrospective evidence pointing to reduced overall treatment time with fewer scheduled appointments with the use of self-ligating systems.

While many clinicians recommend selected self-ligating appliances to facilitate expansion in non-extraction treatment, there are no published long-term follow-up studies on the stability of this approach.

Vittorio Cacciafesta, DDS, MSc, PhD
Milan, Italy
Preface

Self-ligating brackets—in recent years these words have taken on almost unbelievable magic powers. It is now almost impossible to envisage orthodontic treatment without such brackets. Keywords supporting this idea are: greater user comfort; better differentiation from competitors; more marketing possibilities, economical, shorter chair times, easy-to-use, patient comfort, perfect for your patients, and so on. The conclusion is: everything works easier and quicker. Sometimes the phrase “intelligent system” is used. Somewhat exaggerated, it seems as if the bracket at last can inform the tooth who is now in charge of moving from the false to the correct position. And the tooth? It follows the new brackets obediently, friction-free, and at a breathtaking pace.

By putting this rather ironic text at the front of a specialist book, the authors attempt to make it clear that they are attempting to replace suggestive remarks with facts and to be critical about advertising slogans. All the authors have been working with self-ligating brackets for a long time and will be presenting their investigations and experiences accordingly in this book.

Sometimes it may seem that self-ligating (SL) brackets are a recent invention. This is not the case. The first experiments with brackets that fixed the wire into the slot date back to the 1930s. The era of modern SL brackets began with Speed Brackets around 1980. For almost two further decades the SL brackets existed in the background. The growing number of systems and concepts from recent years is difficult to explain. The explosive growth in popularity became quite uncontrolled, and this book will try to clear the undergrowth as it were.

There have been many publications on this topic during recent years. A lot of experience has been gained regarding friction and treatment times as well as the requirements for clinical use and treatment possibilities. The aim of the authors is to summarize existing knowledge and to complement it with their own experiences and study results, in order to provide readers with an overview of SL brackets that is as comprehensive as can be. Following a chapter on the history of SL brackets, the first part of the book presents aspects dealing with material and techniques, including the evaluation of selected systems. The second part of the book is dedicated to clinical practice. Here also the authors have tried to demonstrate the complexity of the topic from the first to the final treatment steps. Statements are illustrated using numerous case studies. The conclusion drawn from this section could be: SL brackets are and will remain interesting tools, if they are properly used. They are just one of the many therapeutic choices in the hands of a doctor, and not a “magic pill.”

This book is intended to be both a guide and a compendium, teaching beginners how to use this method, helping advanced users to detect sources of errors, and encouraging readers to go in a new, creative direction.

The authors thank everyone who played a part in completing the manuscript by giving advice and help, whether directly or indirectly, and those who motivated us to invest a great amount of work to reach our goal. Without this help the project would not have been realized so quickly. Our special thanks go to the Editorial Department of Thieme Publishers in Stuttgart for their excellent cooperation and the way in which they were able to turn our not always simple ideas into reality.

Bjoern Ludwig, MD
Dirk Bister, MD, DD
Sebastian Baumgaertel, DMD, MSD, FRCD(C)
Contents

I Basics

1 The Development and History of Fixed Appliances

Franziska Bock

<table>
<thead>
<tr>
<th>Development of Self-Ligating Bracket Systems</th>
<th>The 1980s</th>
<th>The 1990s</th>
<th>The 21st Century</th>
<th>Expectations and Reality</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

2 Materials

Björn Ludwig and Bettina Glasl

<table>
<thead>
<tr>
<th>Self-Ligating Brackets</th>
<th>Rotation and Friction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bracket Base</td>
<td>Rotation</td>
</tr>
<tr>
<td>Shape of the Base</td>
<td>Friction</td>
</tr>
<tr>
<td>Bond Strength</td>
<td></td>
</tr>
<tr>
<td>Bracket Body</td>
<td></td>
</tr>
<tr>
<td>Slot</td>
<td></td>
</tr>
<tr>
<td>Friction</td>
<td></td>
</tr>
<tr>
<td>Torque</td>
<td></td>
</tr>
<tr>
<td>Auxiliary Slots</td>
<td></td>
</tr>
<tr>
<td>Clips, etc.—SL Mechanics</td>
<td></td>
</tr>
<tr>
<td>Active Systems</td>
<td></td>
</tr>
<tr>
<td>Passive Systems</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Archwires</th>
<th>Archwire Sequence</th>
<th>Archwire Shape</th>
<th>Auxiliaries</th>
<th>Elastics</th>
<th>NiTi Coil Springs</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>26</td>
<td>29</td>
<td>30</td>
<td>30</td>
<td>31</td>
</tr>
</tbody>
</table>

3 Bracket Systems

Heiko Goldbecher

<table>
<thead>
<tr>
<th>Basic Principles</th>
<th>The Various Self-Ligating Bracket Systems</th>
<th>Treatment</th>
<th>Shorter Chairside Time</th>
<th>Bonding of Brackets</th>
<th>Ligation of Archwires</th>
<th>Debonding of the Fixed Appliances</th>
<th>Repairs</th>
<th>Reduction of Overall Treatment Time</th>
<th>Active Treatment</th>
<th>Oral Hygiene of Self-Ligating Brackets</th>
<th>Longer Intervals between Adjustments</th>
<th>Reduction of Staff</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>35</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>51</td>
<td>53</td>
<td>53</td>
<td>55</td>
<td>55</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Damon 3</td>
<td>In-Ovation R (GAC)</td>
<td></td>
</tr>
<tr>
<td>In-Ovation C (GAC)</td>
<td></td>
</tr>
<tr>
<td>Opal (Ultradent)</td>
<td>In-Ovation (GAC)</td>
<td></td>
</tr>
<tr>
<td>Opal M (Ultradent)</td>
<td></td>
</tr>
<tr>
<td>Quick 2 (Forestadent)</td>
<td></td>
</tr>
<tr>
<td>SmartClip (3 M Unitek)</td>
<td></td>
</tr>
<tr>
<td>Claris SL (3 M Unitek)</td>
<td></td>
</tr>
<tr>
<td>Speed (Strite Industries, Ltd.)</td>
<td></td>
</tr>
<tr>
<td>Time 2 (American Orthodontics)</td>
<td></td>
</tr>
<tr>
<td>Time 3 (American Orthodontics)</td>
<td></td>
</tr>
<tr>
<td>Vision LP (American Orthodontics)</td>
<td></td>
</tr>
<tr>
<td>Discovery SL (Dentaurum)</td>
<td></td>
</tr>
</tbody>
</table>
II Treatment

4 Diagnosis

Bjoern Ludwig and Bettina Glasl

- **Standard Diagnostic Tools in Orthodontics** 62
- **Diagnosis and Treatment Planning** 65
- **Additional Diagnostic Tools** 71

5 Oral Hygiene

Heiko Goldbecher and Jens Bock

- **Basics** 73
- **Symptoms and Etiology of Caries** 73
- **Epidemiology of Caries** 74
- **Gingivitis and Periodontitis** 74
- **Hygiene Approaches for Fixed-Appliance Treatment** 75
- **Prophylactic Measures** 75
- **Bonding** 75
- **Active Tooth Movement** 76
- **Active Measures** 78
- **Oral Hygiene after Fixed-Appliance Treatment** 81

6 Bonding Techniques

Heiko Goldbecher and Jens Bock

- **The Development and History of Bonding Techniques** 83
- **Positioning of Brackets** 83
- **Vertical Positioning** 83
- **Horizontal Positioning** 84
- **Bonding** 86
- **Positioning of Self-Ligating Brackets** 88
- **Direct and Indirect Bonding Techniques** 92
- **Direct Bonding** 92
- **Indirect Bonding** 94
- **Transfer Trays** 94
- **Silicone Transfer Trays** 94
- **Vacuum-Formed Trays** 94

7 Treatment

Bjoern Ludwig and Bettina Glasl

- **Space Creation** 98
- **Alignment** 98
- **Biomechanics** 98
- **Expansion of the Arches** 101
- **Crowding and Ectopic Canines** 104
- **Treatment of Occlusion after Leveling and Alignment** 116
- **Space Creation by Distalization** 124
- **Space Creation by Expansion of Arches** 135
- **Space Creation by Extracting Teeth** 142
- **Space Creation by Interproximal Reduction (IPR)** 148
- **Correction of Skeletal Discrepancies** 148
- **Correction of a Class II Buccal Segment Relationship** 148
- **Functional Mandibular ADVancer** 148
- **Easy-Fit Jumper** 152
- **Correction of Class III Malocclusions** 155
- **Esthetic Treatment** 159
- **Self-Ligating Ceramic Brackets** 159
- **Lingual Self-Ligating Brackets** 163

8 Auxiliary Equipment and Techniques

Bjoern Ludwig, Bettina Glasl, and Thomas Lietz

- **Practical Application of Self-Ligating Brackets** 173
- **Archwire Shift** 178
- **Slippery Archwires** 178
- **Detailing Bends** 180
- **Individualized Arches** 180
- **Correction of the Occlusion** 181
Contents

Other Useful Auxiliaries ... 183
Spikes .. 183
Bite Planes ... 183
 Anterior Bite Planes ... 184
 Lateral Bite Planes .. 185
Combination of Buccal and Lingual Brackets (Hybrid Appliance) 188
Auxiliary Slots ... 191

Interproximal Enamel Reduction (Stripping) 195
Recontouring of Incisal Edges 197
Mini-Implants .. 199
 Uses and Choice of a Mini-Implant System 200
 Planning the Biomechanics and Area of Insertion 200
 Attachments .. 202
 Example Applications for Mini-Implants 205

9 Retention and Stability

Bettina Glasl and Bjoern Ludwig

<table>
<thead>
<tr>
<th>Biological Basis ..</th>
<th>215</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Tooth Movement ..</td>
<td>215</td>
</tr>
<tr>
<td>Functional Parameters of the Orovestibular System</td>
<td>215</td>
</tr>
<tr>
<td>Patient’s Age ..</td>
<td>215</td>
</tr>
<tr>
<td>Tooth Morphology ...</td>
<td>216</td>
</tr>
<tr>
<td>Concepts of Retention ...</td>
<td>217</td>
</tr>
<tr>
<td>Retention Protocol ...</td>
<td>217</td>
</tr>
<tr>
<td>Relapse Prevention Based on the Original Malocclusion</td>
<td>217</td>
</tr>
<tr>
<td>Standard Retainers ...</td>
<td>217</td>
</tr>
<tr>
<td>Retention of Transverse Corrections</td>
<td>222</td>
</tr>
<tr>
<td>Retention of Class II Cases</td>
<td>222</td>
</tr>
<tr>
<td>Retention in Class III Cases</td>
<td>222</td>
</tr>
<tr>
<td>Retention after Treatment for Deep Bites</td>
<td>223</td>
</tr>
<tr>
<td>Retention after Treatment for Anterior Open Bites</td>
<td>223</td>
</tr>
<tr>
<td>Retention after Correction of Significant Rotations and Severe Crowding</td>
<td>224</td>
</tr>
<tr>
<td>The Spaced Dentition ...</td>
<td>226</td>
</tr>
<tr>
<td>Management of Relapse ...</td>
<td>230</td>
</tr>
<tr>
<td>Interproximal Enamel Reduction (Stripping)</td>
<td>230</td>
</tr>
<tr>
<td>Individual Set-up for Vacuum-Formed Aligners</td>
<td>231</td>
</tr>
<tr>
<td>SOX Retainers ..</td>
<td>231</td>
</tr>
</tbody>
</table>

Index .. 236
Recent advances in fixed appliance treatment in orthodontics are based on a combination of applied knowledge and the use of materials relating to that knowledge. For self-ligation, the applied knowledge consists of the generally transferable skills involved in diagnosis and treatment. The hardware consists of brackets, archwires, and bands, which are used for treatment with conventional fixed appliances. All of the approaches used in self-ligation are identical to those used for general treatment with conventional fixed appliances.

Fixed appliance treatment is easier when straight-wire techniques are used, and auxiliary elements are often useful. The basic principles, however, are the same for self-ligation as in conventional orthodontics—for example, bracket placement is of paramount importance for good finishing. Inadvertent errors in bracket placement can be compensated for either by repositioning the brackets or by using first-, second-, or third-order bends. Self-ligation does not confer any advantages in this respect.

Self-Ligating Brackets

Like ordinary fixed appliances, a self-ligating bracket consists of a bracket base and a body containing slots and tie-wings (Fig. 2.1). The difference between conventional and self-ligating brackets lies in the way in which the archwire is engaged in the slot. In self-ligation, the bracket itself contains a clip or other mechanism, which is used instead of either elastic or metal ligatures.

Just like conventional brackets, self-ligating brackets really only serve one function: they are the junction between the element generating the force (wire or auxiliary) and the tooth—so that they are simply a means to an end. The use of self-ligating brackets has given rise to a number of treatment philosophies, which are believed to offer significant advantages over ordinary ligation. However, it is important to remember that the tooth is not aware of how the force is being applied to it—whether it is by self-ligation or ordinary ligation.

A number of challenges that apply to traditional brackets also apply to self-ligating brackets: the fit of the bracket base to the tooth, the precision of the archwire slot, etc. There are few differences between self-ligation and ordinary ligation, as the method of production for the two systems is identical. Depending on how self-ligating brackets are manufactured, there may be a number of technical issues with the locking mechanism, which are described in greater detail in the section on "Rotation and Friction" below.

An ideal self-ligating bracket should have the following characteristics:

- Anatomically appropriate curvature of the bracket base including retention and undercut
- Marking of the vertical and horizontal axis
- An appropriately designed layout for good bracket positioning

Bracket Base

The bracket base connects the bracket to the tooth and therefore must have retentive elements such as mesh, undercuts, or other retentive features which allow for good band strength. The adhesive enters the undercuts and allows mechanical retention, which should be resistant to everyday masticatory forces on the one hand, but should still be capable of being debonded without damaging the enamel surface on the other.

Shape of the Base

An ideal base should follow the curvature of the respective tooth surface for a good fit. This should enable the operator to place the bracket securely in the appropriate position on the tooth without rocking. A poorly fitting base can result in unprecise torque, angulation, and rotation once the full-sized wire is completely engaged. In order to produce an appropriately fitting bracket base, the manufacturer needs to pay attention to a number of factors.

The buccal surfaces of individual teeth show only very minor anatomical variations. An anatomically preformed bracket base is ideal and will fit well in the majority of cases. A precisely fitting base needs to take into account both the occlusal—gingival and also the mesiodistal curvature of the tooth surface. This is a challenge from the manufacturing point of view as a tooth surface is not built with a uniform curvature and a single radius like a circle, where a bracket can be positioned anywhere on the surface with equally good results. A tooth surface has many diverse radii and curvatures, depending on the location on the surface—and this applies to both the occlusal—gingival and mesiodistal directions (Fig. 2.2).

![Fig. 2.1 a, b The general design of a self-ligating bracket.](image-url)
The importance of the congruence of the bracket base and the surface of the tooth has been known for a long time. Most manufacturers now offer brackets that have different surface characteristics with increased or decreased convergence. These convergences were originally determined by cross-sectional analysis of teeth that were cut in order to measure the curvature. It was therefore only possible to obtain a small number of convergences per analyzed tooth; due to the intense labor involved, the sample size per tooth type was usually small. Despite this, the results from the original studies are still often used in the manufacturing of bracket bases even today. Modern three-dimensional reconstructions of tooth surfaces are nowadays used in computer models and this method allows better correlation of the bracket base with the actual surface of the teeth, due to the increased number of teeth that can be analyzed and averaged. Some manufacturers use this technique to design and construct their bracket bases and therefore claim to produce better-fitting bracket bases than others, but it is important for the bracket base to be manufactured in such a way that the data obtained can be used in a meaningful way. This is most likely to be possible with metal injection molding (MIM) or ceramic injection molding (CIM). Both of these techniques allow the individualized and fitted shape to be transferred when the bracket is
produced. A number of bracket manufacturers produce a bracket base from premanufactured plates, which are then bent into the desired shape. In a separate step, this bracket base is then connected to the bracket itself (see the section on “Bracket Body” below). It is not possible to produce the ideal surface characteristics that a bracket should have using these techniques. This is due to the very small size of the bracket base, resistance to deformation by the metal itself, and manufacturing issues with the application of forces to the small surfaces.

Positioning errors can also result from canting the bracket or from migration of the bracket between positioning and polymerization. This may lead to poor slot orientation and in turn to undesired tooth movement (Fig. 2.4).

Bond Strength

The ideal orthodontic bracket adhesive should have two main properties: on the one hand, it should ensure a sufficient bond strength to be able to withstand the everyday stresses of mastication and manipulation. On the other hand, it should also allow easy removal of the bracket without damage to the enamel. As these two properties are diametrically opposed, orthodontic adhesives compromise by trying to deliver an adequate bond strength for most clinical situations—neither too strong nor too weak.

Most studies would agree that the minimum bond strength necessary for orthodontic treatment is in the
The following advertising slogan appears in a brochure highlighting the advantages of self-ligating systems: "Everything’s simpler and you save on everything!" Other advertising materials are more specific, and the following list details the main advantages claimed by manufacturers of self-ligating systems:

- Increased patient comfort
- Ease of operator handling
- Mechanism that is easy to open and close
- Allows faster ligation than conventional brackets
- Better oral hygiene
- Reduced friction characteristics leading to shorter treatment times
- Shorter appointment times (less chairside time)
- More efficient treatment (fewer appointments and increased intervals between appointments)

Clearly, self-ligating brackets cannot produce any of these advantages unless they are used by an experienced clinician who understands the basic principles and the strengths and weaknesses of the bracket systems. Some cases involve a degree of difficulty at which self-ligating brackets (SLBs) and wires alone are insufficient for solving the problem. Even in the hands of the most experienced operator, SLBs may need to be supplemented with auxiliaries. As SLBs are only one of the many tools available to contemporary orthodontists, it is the operator’s responsibility to establish the most suitable way to treat a malocclusion and to select the most appropriate strategies and tools. This chapter presents supplementary information on adjuncts and auxiliary techniques, which may be helpful when treating different malocclusions using self-ligating brackets.

The use of self-ligating brackets does not redefine the principles of orthodontics. Most of the treatment approaches that are already known still apply—to move a tooth into a desired spot, you require time, anchorage, and space. Treatment should only be contemplated once these three parameters have been considered carefully and the treatment objectives have been designed around them.

Practical Application of Self-Ligating Brackets

“Open the door, insert the archwire, close the door!” That is how simple the use of an SLB should be. However, this may be more wishful thinking than reality. There are two main weaknesses that affect the use of self-ligation in orthodontics—the ligating mechanism itself and the operator who uses it.

Self-ligating brackets are difficult to manufacture. The materials used, particularly for the locking mechanism, have to be able to withstand masticatory forces as well as the stress that normally occurs during orthodontic treatment, while at the same time they have to have the ideal properties to allow precise fabrication. Assembling the ligation mechanism and coupling it to the rest of the bracket is a challenging manufacturing process. The mechanism needs to be manufactured to extremely high standards, and this is particularly difficult because different materials are used for the bracket base and the locking mechanism, and by default their respective tolerances differ. The resulting bracket is a delicate device that requires careful and diligent handling.

There is no single self-ligating bracket available today that is capable of tolerating inept and “forced” handling by the operator. The opening of the locking mechanism, insertion of the archwire, and closure of the locking mechanism have to be undertaken carefully and require an understanding of the locking mechanism itself as well as careful tactile handling. Most operators experience a steep learning curve associated with the use of self-ligation. Regardless of which
Table 8.1 The learning curve for an untrained layperson using traditional brackets (red) and self-ligating brackets (blue). Even after some practice, elastic ligation took three times longer than self-ligation.

<table>
<thead>
<tr>
<th>Method</th>
<th>Attempt 1</th>
<th>Attempt 2</th>
<th>Attempt 3</th>
<th>Attempt 4</th>
<th>Attempt 5</th>
<th>Attempt 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clip</td>
<td>2.14</td>
<td>1.45</td>
<td>1.25</td>
<td>1.21</td>
<td>1.23</td>
<td>1.37</td>
</tr>
<tr>
<td>Elastic</td>
<td>7.26</td>
<td>5.15</td>
<td>4.50</td>
<td>3.08</td>
<td>4.07</td>
<td>4.57</td>
</tr>
</tbody>
</table>

It is not always possible to assess the user-friendliness of a particular self-ligating bracket system after training on a demonstration model. Whatever the system, it takes considerable time for the operator to become accustomed to self-ligation and to no longer using wire or elastomeric ligatures. However, there is also a learning curve when conventional ligation is used. Comparisons of the learning curves for previously untrained personnel show that self-ligation is actually learned more quickly than ligation with elastomeric elements or tie-wings, and that it takes less time to ligate the wire using SLBs, even for inexperienced operators. In the authors’ experience, however, it appears to be difficult for operators to learn the effective use of self-ligation once they have previously been trained in the use of conventional ligation techniques (Table 8.1).

As mentioned above, a detailed understanding of self-ligating mechanisms is often the key to using the system successfully. It is mandatory to have the recommended instrumentation for opening and closing the brackets. It may be useful to remember that closure of most mechanisms can be undertaken without instrumentation using gloved fingers, which often proves to be more efficient than religating conventional brackets with elastomeric ligatures. Manufacturers produce instruments specifically designed for their own bracket systems, most of which are not compatible with other systems.
Fig. 8.3a–k Different types of instruments for opening the mechanism in self-ligating brackets.

a–c The SmartClip bracket (3 M Unitek) with special pliers.
d–f The Quick bracket instrument (Forestadent), similar to a dental probe.
g–h The In-Ovation instrument (GAC).
i–k The Discovery SL instrument (Dentaurum), resembling a scaler (images with kind permission from Dentaurum).

CLINICAL PEARL

Although the dedicated adjuncts appear expensive, it is advisable to use the instruments recommended by the manufacturer (Fig. 8.3).

Specifically, the probe-like instruments for self-ligating brackets can be easily confused between different manufacturers or indeed between various systems produced by the same manufacturer. It may be advisable to mark the various instruments for particular systems if several self-ligating systems are used in the same practice. The locking mechanism itself is a fine-tuned mechanical device that is likely to fail if it is handled inappropriately and with too much force (Fig. 8.4).
Once an arch or locking mechanism has been bent or distorted, it cannot be repaired. It is often best to use conventional ligation on the damaged bracket (if possible) or to replace the bracket.

The locking mechanism will also fail if composite finds its way into the mechanism, particularly during the bonding procedure. This can often be avoided if the correct amount of bonding agent is carefully applied in the middle of the bracket base.

CLINICAL PEARL

Excess bonding material should ideally be removed immediately after seating the bracket, to prevent the bonding material from interfering with the self-ligating mechanism.

The self-ligating mechanism can also be damaged during chewing, particularly when there are strong masticatory forces; this is often the case in patients with a deep bite. This type of damage can often be prevented by using bite-opening devices (see the following section on “Bite Planes,” p. 183).

Another reason for irreversible damage to the locking mechanism occurring is forced engagement of the archwire in the bracket slot. This can be a problem particularly if large or excessively stiff wires are used. The fit of the archwire needs to be carefully checked before the operator attempts to close the locking mechanism. The lid can be irreversibly damaged during closure of a poorly fitting archwire. The propensity to cause damage depends on the wire size and material, the position of the tooth, and the position of the bracket on the tooth itself. Any of the above parameters are important, as they can lead to the archwire not being fully engaged in the bracket slot. The lid may subsequently not shut properly if the wire cannot be seated properly in the bracket slot and this may lead to ineffective treatment. Additional instruments (such as a wire director) are often useful for engaging the archwire properly into the bracket slot before closing the locking mechanism (Fig. 8.5). Several manufacturers now also offer self-ligating molar brackets. These can be useful, as they allow extraoral preparation of the archwire for detailing or cinch-back bends, with subsequent easy insertion into molar SLBs. This reduces the risk of debonding the bracket or otherwise damaging it in comparison with creating the bends intraorally (Fig. 8.6). Table 8.2 highlights the potential reasons for damage to the locking mechanisms and offers suggestions for ways to prevent these problems.
Case Study 8.9 (Fig. 8.35)

Patient: D.F.H., male, age 16.

Diagnostic records: models, panoramic radiograph, lateral cephalometric radiograph, intraoral/extraoral photographs.

Main findings: mandibular second molars mesially impacted.

Treatment aims: uprighting of teeth 37 and 47.

Appliances: self-ligating molar tubes, uprighting springs, miniscrew implant.

Alternative treatment strategy: extraction of teeth 37 and 47 with alignment of teeth 38 and 48.

Active treatment time: 8 months.

Retention: three-dimensional retention with a Hawley retainer.

Fig. 8.35 1–15

1–6 Well-progressing treatment with self-ligating brackets. The progress panoramic radiograph shows mesially impacted mandibular second molars. After extraction of teeth 38 and 48 and surgical exposure of teeth 37 and 47, brackets were bonded and miniscrew implants were placed to allow molar uprighting with an uprighting spring and to avoid reciprocal side effects. The springs were activated to allow distalization and uprighting at the same time.

7, 8 Uprighting a molar creates momentum that may have an undesired effect on the anterior dentition. Use of a miniscrew implant can absorb the undesired reciprocal momentum.
The initial uprighting phase (9). The front teeth of the patient were debonded after alignment of the dentition was completed (10). Posterior sectional mechanics were used for continuation of the molar uprighting. A mini-implant which was inserted between 44 and 45 was used for anchorage.

The miniscrew implant absorbs reactive forces and prevents negative biomechanical effects on the anterior dentition during molar uprighting.

Panoramic radiographs before and after successful molar uprighting.

REFERENCES

Index

Page numbers in italics refer to illustrations or tables

A

abrasions 56, 56
absolute anchorage 200
abutments 204
acid-etching 14, 86, 93
Activa bracket 4, 4
active systems 22, 23, 24, 34, 34
adhesives 12
- bond strength 12–14, 13, 14, 15
- thermoactive adhesives 94
- see also bonding
aesthetic treatment
- ceramic self-ligating brackets 159, 159
- case study 160–162
- lingual self-ligating brackets 49, 163–164, 163, 164
- case studies 150–151, 165–170, 205, 233–234
- see also SOX retainers
aesthetic zone 159, 159
age, relapse and 215
alignment 55, 98–122, 163
- arch expansion 101–102, 101, 102, 103
- biomechanics 98–100
- force levels 98, 99, 99
- lingual self-ligating brackets 167–170
- mini-implants 211–212
- occlusion treatment after alignment 116–123
- posterior bite elevators 186–187, 189–190
- retention 218–221, 230–231, 233–234
treatment time 55–56, 55, 56
amelogenesis imperfecta 198
anchorage 199
- categories 199, 199
- endosseous 200
- extraoral 200
tissue-borne 199
tooth-borne 199–200
- intermaxillary 200
- intramaxillary 199–200
- see also mini-implants
Angle, Edward H. 2, 215
annealing archwire distal ends 178, 179
anterior bite elevators 57, 57, 184–185, 184, 220
arch expansion 101–102, 101, 102, 103
dental versus skeletal expansion 101–102, 102, 122
hybrid rapid maxillary expansion 122, 135–136, 135, 136, 137
- case studies 138–142, 156–157, 158
- single-arch treatment 167
- surgical 102, 104
- with archwires 101, 102, 103
archwire 26–30, 34, 34
- aesthetic 159, 159, 160
- annealing the distal ends 178, 179
- arch expansion 101, 102, 103
- binding 17, 17
detailing bends 180, 180, 181
elastic properties 26–28, 27
- forces acting on 27
friction 17, 17, 18
ligation 51, 51, 52
notching 17, 17
permanent deformation 28, 178
sequence 29, 29
shape 29–30, 29
- changing 178, 179
- shifting 178, 178
- securing methods 178, 179
- surface variations 28, 28
torque and 19–21, 19, 20, 21
articular disk displacement 64, 150
auxiliaries 30–31, 32, 173
- bite planes 183–187
- anterior 57, 57, 220
- case study 186–187
- lateral 185, 185
- posterior 186, 186–187, 189, 189–190
- procedure 184
- mini-implant attachments 202–204, 202–204
NiTi coil springs 31, 31
spikes 183, 183, 223, 223
- see also elastomeric elements
auxiliary slots 22, 22, 191
- use of 22, 191–192

B

Band Lok Blue 185
bands 83
bends 121, 180, 180, 181
binding 17, 17, 18
biomechanics 98–99, 99
- see also force/deflection studies
bite planes 183–187
- anterior 57, 57, 184–185, 184, 220
- case study 186–187
- lateral 185, 185
- lingual 183, 184
- posterior 186, 186–187, 189, 189–190
- procedure 184
bite-blocks 154
bite-jumping techniques 152
- case study 153–155
bite-opening devices 176
blocked-out teeth 177
- incisors 153–155, 190
- see also crowding
bond strength 12–14, 13, 14, 15
- increase 86
Bond-a-Braid 225
- breakage 224
- see also fixed retainers; retention
bonded temporary bridge 229
bonding 54, 86–88
colored bonding agents 76, 76, 88, 88
development and history of techniques 83, 83
direct 92, 92, 93, 96
indirect 92, 94, 95, 96, 96
oral hygiene measures 75, 76
removal of excess bonding material 176
time required 50
to enamel 86, 86, 87
- to previously filled or altered tooth surfaces 86, 86, 87
- see also bond strength box elastics 209, 209
Boyd bracket 3, 3
- bracket base 10–14
- bond strength 12–14, 13, 14, 15
- shape of 10–12, 11, 12
- see also self-ligating (SL) brackets
- bracket body 15, 15, 16
- block design 15, 16
- marking 15, 16, 90
- tie-wing design 15, 16
- see also self-ligating (SL) brackets
- bracket positioning 83–84, 88, 89, 90, 91
- horizontal positioning 84, 85
- vertical positioning 83–84, 84, 85
- bridge 229
- buccally positioned canines 108, 110, 128, 141, 218

C

- calculus accumulation 52, 52
- camouflage treatment 142, 145, 148
- canines
 - buccally positioned 108, 110, 128, 141, 218
- ectopic 104, 119, 132
- impacted 63, 165–166, 193–194
- see also crowding
- caries 73, 74
- epidemiology 74
- erupting teeth 78
- etiology 73–74
- see also oral hygiene
- Carriere LX bracket positioning 90
- cephalometric analysis 62, 113, 121
- case studies 65–70, 130, 139, 147, 161, 229
- ceramics
 - aesthetic self-ligating brackets 159, 159
 - case study 160–162
 - bonding to 87
 - injection molding (CIM) 11–12
 - chairside time 50–54, 50
 - bonding of brackets 50
 - debonding 53, 53
- ligation of archwires 51, 51, 52
- repairs 53–54, 53, 54
- chlorhexidine 78, 78
- cinching tool 179
- Clarity SL bracket 6, 6, 42, 42, 47
- archwire issues 51
- oral hygiene and 59, 59
- class II malocclusions 105, 116, 120–121, 148–155, 158, 169, 206, 216, 220
- Easy-Fit Jumper 152, 152
- – case study 153–155
- – Functional Mandibular Advancer (FMA) 148–149, 149, 222, 222
- – case study 150–151
- – retention 222
- – see also malocclusion
- class III malocclusions 65, 155, 158
- case studies 65–71, 110, 141–142, 156–158
- – retention 222
- – see also malocclusion
- clips 22–23
- – active systems 22, 23, 24, 34, 34
- – passive systems 23, 23
- – reasons for defects 177
- – stresses and strains on handling 24, 26, 176
- – see also locking mechanism
- coil springs 31, 31
- – closed 203
- – open 203
- composite fillings and veneers
 - bonding to 86, 86, 87
- computed tomography (CT) 165
- – cone-beam CT (CBCT) 62, 63
- congenitally missing teeth 206–208, 216, 227
- – see also spaced dentition
- crimpable hook 203
- cross-tubes 203
- crossbite 186, 186–187, 189
- – bilateral 122, 123, 138
- – buccal 56, 184
- – lateral 65, 141
- crowding 103, 104
- – aesthetic treatment 160–162, 167–170
- – hybrid appliances 189–190
- – class III malocclusion and 158
- – retention 220–221, 224, 227–228, 233–234
- – see also space creation

D

- Damon brackets 5, 5
- archwire issues 51, 52
- – Damon 3 35, 35, 47
- – oral hygiene and 59
- – positioning 91
- – problems with 52, 53, 53, 56, 56
- – removal 53
- Dass lip activator 224
- debonding 53, 53
- decayed, missing, and filled teeth (DMFT) index 74
- deep bite 184, 189, 206, 220
- – retention after treatment 223
demineralization 73, 74
– prophylactic measures 76, 76
– see also oral hygiene
derotation 191
– derotating spring 32, 191
– see also rotation
detailing bends 180, 180, 181
diagnosis 62
– tools 62–65, 63, 64, 71
treatment planning case study 65–71
- Discovery SL bracket 6, 6, 34, 46, 47, 48
– instruments for opening 175
– oral hygiene and 58
distalization 124–127
– case studies 128–134
- DMFT (decayed, missing, and filled teeth) index 74

E

- Easy-Fit Jumper 152, 152
- – case study 153–155
ectopic teeth 132, 195
canines 104, 119, 132
– see also blocked-out teeth
- Edge software package 62
<table>
<thead>
<tr>
<th>Page</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>238</td>
<td>elastomeric elements 30, 30, 51, 55, 55, 181</td>
</tr>
<tr>
<td></td>
<td>- box elastics 209, 209</td>
</tr>
<tr>
<td></td>
<td>- class II malocclusion 151</td>
</tr>
<tr>
<td></td>
<td>- intermaxillary arrangements 182</td>
</tr>
<tr>
<td></td>
<td>- loss of elasticity 30, 59</td>
</tr>
<tr>
<td></td>
<td>- tension testing 30</td>
</tr>
<tr>
<td></td>
<td>electric toothbrushes 76–77, 77</td>
</tr>
<tr>
<td></td>
<td>- bonding to 86, 86, 87</td>
</tr>
<tr>
<td></td>
<td>- reduction see stripping (enamel reduction)</td>
</tr>
<tr>
<td>225</td>
<td>everStick Ortho</td>
</tr>
<tr>
<td>163</td>
<td>Evolution LT bracket</td>
</tr>
<tr>
<td>195</td>
<td>- crowding and 104</td>
</tr>
<tr>
<td></td>
<td>- malocclusion and 65</td>
</tr>
<tr>
<td></td>
<td>- space closure case study 205</td>
</tr>
<tr>
<td></td>
<td>- space creation 142–148</td>
</tr>
<tr>
<td></td>
<td>- case studies 143–147</td>
</tr>
<tr>
<td>99</td>
<td>extraction</td>
</tr>
<tr>
<td>155</td>
<td>F face mask</td>
</tr>
<tr>
<td>156</td>
<td>Fauchard, Pierre</td>
</tr>
<tr>
<td>86</td>
<td>fillings, bonding to 86, 86, 87</td>
</tr>
<tr>
<td>99</td>
<td>finishing 56–57</td>
</tr>
<tr>
<td>176</td>
<td>finite-element analysis 24, 26, 99,</td>
</tr>
<tr>
<td>76</td>
<td>fixed retainers 81, 81, 111, 114, 115, 162, 189, 193, 224</td>
</tr>
<tr>
<td>224</td>
<td>- breakage</td>
</tr>
<tr>
<td></td>
<td>- procedures and materials 225</td>
</tr>
<tr>
<td></td>
<td>- see also bonded retainers; retention</td>
</tr>
<tr>
<td>5</td>
<td>Flair bracket 5, 5</td>
</tr>
<tr>
<td>76</td>
<td>fluoride-containing materials 76, 76</td>
</tr>
<tr>
<td>58</td>
<td>food debris 58–59, 58, 59</td>
</tr>
<tr>
<td>98</td>
<td>force levels 98, 99, 99</td>
</tr>
<tr>
<td>27</td>
<td>force/deflection studies</td>
</tr>
<tr>
<td></td>
<td>- archwires 27</td>
</tr>
<tr>
<td></td>
<td>- elastomeric chains 30, 30</td>
</tr>
<tr>
<td></td>
<td>- NiTi coil springs 31</td>
</tr>
<tr>
<td>3</td>
<td>Ford Bracket 3, 3</td>
</tr>
<tr>
<td>17</td>
<td>friction 17, 17, 18, 23–24, 25</td>
</tr>
<tr>
<td>23</td>
<td>- measurement 23, 25</td>
</tr>
<tr>
<td>124</td>
<td>Frog appliance 124, 124, 125, 127, 133</td>
</tr>
<tr>
<td>128</td>
<td>- case studies 128–134</td>
</tr>
<tr>
<td>148</td>
<td>Functional Mandibular Advancer (FMA)</td>
</tr>
<tr>
<td>149</td>
<td>- case study 150–151</td>
</tr>
<tr>
<td>149</td>
<td>- modified 148–149, 149</td>
</tr>
<tr>
<td>155</td>
<td>gingival contouring</td>
</tr>
<tr>
<td>132</td>
<td>gingival graft</td>
</tr>
<tr>
<td>74</td>
<td>gingivitis 74–75, 75</td>
</tr>
<tr>
<td>70</td>
<td>growth 70, 155, 215</td>
</tr>
<tr>
<td>178</td>
<td>hammerhead pliers 178, 179</td>
</tr>
<tr>
<td>105</td>
<td>Hawley retainers 105, 108, 110, 128, 131, 145, 206, 211, 220, 221, 222, 227</td>
</tr>
<tr>
<td>217</td>
<td>- modified 217, 219</td>
</tr>
<tr>
<td>148</td>
<td>- see also retention</td>
</tr>
<tr>
<td>148</td>
<td>Herbst appliance 148</td>
</tr>
<tr>
<td>203</td>
<td>hooks</td>
</tr>
<tr>
<td>188</td>
<td>hybrid appliances 188</td>
</tr>
<tr>
<td>189</td>
<td>- case studies 189–190</td>
</tr>
<tr>
<td>122</td>
<td>hybrid rapid maxillary expansion 122, 135–136, 135, 136, 137</td>
</tr>
<tr>
<td>138</td>
<td>- case studies 138–142, 156–157, 158</td>
</tr>
<tr>
<td>141</td>
<td>mandibular 155</td>
</tr>
<tr>
<td>66</td>
<td>maxillary 141</td>
</tr>
<tr>
<td>155</td>
<td>hypoplastic maxilla 66, 155, 227</td>
</tr>
<tr>
<td>195</td>
<td>impacted teeth</td>
</tr>
<tr>
<td></td>
<td>- canines 63, 165–166, 193–194</td>
</tr>
<tr>
<td></td>
<td>- mandibular</td>
</tr>
<tr>
<td></td>
<td>- molar 211</td>
</tr>
<tr>
<td></td>
<td>- uprighting 211–212</td>
</tr>
<tr>
<td>5</td>
<td>In-Ovation brackets 5, 5</td>
</tr>
<tr>
<td>5</td>
<td>- In-Ovation C5, 5, 37, 37, 47, 159</td>
</tr>
<tr>
<td>56</td>
<td>- oral hygiene and 58</td>
</tr>
<tr>
<td>52</td>
<td>- problems with 52</td>
</tr>
<tr>
<td>163</td>
<td>- In-Ovation L</td>
</tr>
<tr>
<td>36</td>
<td>- In-Ovation R 36, 36, 48</td>
</tr>
<tr>
<td>175</td>
<td>- instruments for opening 175</td>
</tr>
<tr>
<td>153</td>
<td>incisors</td>
</tr>
<tr>
<td>153</td>
<td>- blocked-out 153–155, 190</td>
</tr>
<tr>
<td>216</td>
<td>- congenitally absent</td>
</tr>
<tr>
<td>107</td>
<td>proclination 107, 112, 145</td>
</tr>
<tr>
<td>197</td>
<td>- recontouring of edges 197, 197</td>
</tr>
<tr>
<td>198</td>
<td>- case study 198</td>
</tr>
<tr>
<td>114</td>
<td>retroclination 114, 118, 118, 119, 120, 128, 153</td>
</tr>
<tr>
<td>11</td>
<td>surface morphology 11</td>
</tr>
<tr>
<td>148</td>
<td>- see also crowding</td>
</tr>
<tr>
<td>223</td>
<td>incompetent lips 148, 223, 224</td>
</tr>
<tr>
<td>76</td>
<td>interdental brushes 76, 77</td>
</tr>
<tr>
<td>99</td>
<td>interproximal reduction (IPR) see stripping (enamel reduction)</td>
</tr>
<tr>
<td>100</td>
<td>intrusion 99</td>
</tr>
<tr>
<td>127</td>
<td>reciprocal</td>
</tr>
<tr>
<td>185</td>
<td>intrusion spring 209</td>
</tr>
<tr>
<td>185</td>
<td>lateral bite planes 185, 185</td>
</tr>
<tr>
<td>175</td>
<td>learning curve 175, 175</td>
</tr>
<tr>
<td>155</td>
<td>leveling phase 55–56, 55, 56</td>
</tr>
<tr>
<td>188</td>
<td>- see also alignment</td>
</tr>
<tr>
<td>191</td>
<td>leveling spring 32, 191, 192</td>
</tr>
<tr>
<td>183</td>
<td>lingual bite elevators 183, 184</td>
</tr>
<tr>
<td>163</td>
<td>lingual self-ligating brackets 163, 164, 163, 164</td>
</tr>
<tr>
<td>205</td>
<td>- case studies 150–151, 165–170, 205, 233–234</td>
</tr>
<tr>
<td>188</td>
<td>- hybrid appliances 188</td>
</tr>
<tr>
<td>189</td>
<td>- case studies 189–190</td>
</tr>
<tr>
<td>148</td>
<td>- see also SOX retainers</td>
</tr>
<tr>
<td>223</td>
<td>lip incompetence 148, 223, 224</td>
</tr>
<tr>
<td>223</td>
<td>locking mechanism 22–23, 173–174</td>
</tr>
<tr>
<td>23</td>
<td>- active systems 22, 23, 24, 34, 34</td>
</tr>
<tr>
<td>173</td>
<td>- damage 173–176, 173, 174, 176, 177</td>
</tr>
<tr>
<td>174</td>
<td>- handling 174–175, 175</td>
</tr>
<tr>
<td>174</td>
<td>- instruments for opening 174–175, 175</td>
</tr>
<tr>
<td>23</td>
<td>- passive systems 23, 23, 34, 34, 56, 57</td>
</tr>
<tr>
<td>174</td>
<td>- repair 174</td>
</tr>
<tr>
<td>116</td>
<td>lower jaw displacement 116</td>
</tr>
</tbody>
</table>
M

Magill, E.W.E. 83
magnetic resonance imaging
(MRI) 62–65, 64
malocclusion
– extraction and 65
– treatment planning case study 65–71
– see also class II malocclusion; class III malocclusion

Mandibular Anterior Repositioning
Appliance (MARA) 148
mandibular expansion 104
– see also arch expansion
mandibular hyperplasia 155
mandibular prognathism 66, 122, 158, 227, 227
marking pins 201–202, 201
maxillary expansion 135–136, 135, 136, 137
– case studies 110–111, 138–142
– see also arch expansion
maxillary hyperplasia 141
maxillary hypoplasia 66, 155, 227
maxillary prognathism 110, 145, 145, 148
maxillary protraction 156, 156, 158
MBT values 19, 19, 20
memory effect 26–28
Memory Maker 178, 179, 180
metal injection molding
(MIM) 11–12
metal surfaces, bonding to 86, 87
mini-implants 124, 125, 126, 135, 135, 199–204
– attachments 202–204
– partly prefabricated parts 202, 202
– pre-fabricated parts 202, 203–204
– standard parts 202
– case studies 131, 138, 156, 205–212
– choice of system 200
– congenitally absent teeth and 216, 216, 227–228
– Functional Mandibular Advancer (FMA) and 149, 149
– indications 200
– placement 200–202, 201
– versus adhesive bridge 229
Mini-Mold system 184–185, 184
MIRA-2-Tone plaque indicators 79
misalignment see alignment
Mobil-Lock bracket 3, 4
molars
– impacted 211
– rotated 133
– supernumerary 169, 170
– uprighting 211–212

N

Newman, G.V. 83
NiTi coil springs 31, 31
noncompliance functional appliances 148
nonocclusion 56, 56
notching 17, 17, 18

O

O-Drive system 196, 196
occlusal stops 105
– see also stops
occlusion correction 181
– case studies 112–113, 198
– after alignment 116–123
– Kim/Sato technique 209
– see also malocclusion; nonocclusion
Onyx Ceph 62
Opal brackets 6, 6, 38, 38, 47
– bond strength 13, 14
– bonding 54
– elastomeric chains and 52
– Opal M 6, 6, 39, 39, 48
– oral hygiene and 58
– problems with 56, 56
– open bite 101, 117, 122, 141, 209, 216, 218
– lip incompetence 148, 223, 224
– retention after treatment 223, 223
Oppenheim, A.J. 215
Optra Gate 92
oral hygiene 58–59, 58, 59, 73
– active measures 78–79, 78, 79, 80
– after treatment 81, 81
– chairside care 80
– plaque accumulation 58–59, 58, 59, 73
– prophylactic measures 75–77
– active tooth movement 76–77, 76, 77, 78
– bonding 75, 76
Ortho-Easy system 124, 126, 200
Ortho-FlexTech 225
osteogenic distraction 102, 104
overbite
– increased 110, 145
– preservation 118
– reduced 65, 117
– traumatic 116
overjet
– increased 110, 120, 150
– reduced 65, 117, 138, 141

P

palatal bite-blocks 154
parafunctional habits 216
passive systems 23, 23, 34, 34
– rotational control 56, 57
pendulum appliance 124, 127, 133, 134
periodontitis 74–75
Phantom bracket 163
Philippe brackets
– 2D 163, 231
– 3D 163
piggyback technique 119, 166, 193–194
Plak-Check indicator 79
plaque
– accumulation 58–59, 58, 59, 73, 73
– indicators 79, 79
– see also oral hygiene
polishing 79, 196, 197
posterior bite elevators 186, 189, 190
– case studies 186–187, 189–190
power arm 202, 205
premolar extraction 142
– case studies 143–147
– see also extraction
prognathism
– mandibular 66, 122, 158, 227, 227
– maxillary 110, 145, 145, 148
Prophy-Jet 79, 80
protraction facemask 155, 156, 156
protraction spring 207
Index

Q
quad helix 102
Quick brackets 6, 6
– bracket base 14
– instruments for opening 175
– positioning 90
– Quick 2 34, 40, 40, 48
– leveling and alignment 55
– removal 53
– Quick C 6
QuickKlear bracket 47, 159

S
Sander uprighting technique 192
Schwartz plate 222
self-conditioning primers 14, 15
self-ligating (SL) brackets 7, 10–25, 10, 34, 49
– advantages and limitations 7–8, 50
– bracket base 10–14
– bond strength 12–14, 13, 14, 15
– shape of 10–12, 11, 12
– bracket body 15, 15, 16
– ceramic 159, 159
– case study 160–162
– history of development 2–6, 3–6
– hybrid appliances 188
– case studies 189–190
– learning curve 175, 175
– lingual 49, 163–164, 163, 164
– case studies 150–151, 165–170, 205, 233–234
– see also SOX retainers
– active systems 22, 23, 24, 34, 34
– damage 173–176, 173, 174, 176, 177
– instruments for opening 174–175, 175
– passive systems 23, 23, 34, 34, 56, 57
– repair 174
– manufacturing processes 15
– molar brackets 176, 177
– nonocclusion side-effect 56, 56
– positioning 83–84, 88, 89, 90, 91
– horizontal positioning 84, 85
– vertical positioning 83–84, 84, 85
– practical application 173–176, 173–177
– see also relapse; specific types of retainers
retrognathia 105, 145, 145
rotation 23, 24, 120, 133, 191
– derotating spring 32, 191
– retention 224
– rotational control 54, 56, 57
Roth values 19, 19, 20
Russell attachment 3, 3
– see also relapse; specific types of retainers
slot 16–22, 17
– stresses and strains on 176
– silicone transfer trays 94, 94
skeletal discrepancies 148–158
– Easy-Fit Jumper 152–155, 152–155
– Functional Mandibular Advancement (FMA) 148–151, 149–151
– retention 222
– class III malocclusions 65, 155, 158
– case studies 65–71, 110, 141–142, 156–158
– retention 222
sliding hook 203
slop (torque loss) 19–21, 19, 20
slot 16–22, 17
– auxiliary 22, 22, 191
– use of 22, 191–192
– friction 17, 17, 18
– quality differences 17, 17
SmartClip bracket 6, 6, 41, 41, 48, 159
– bond strength 13
– instruments for opening 175
– oral hygiene 59
– positioning 88, 89
– social six 159, 159
– soft-tissue three-dimensional re-construction 62–65, 64
SOX retainers 231–232, 231, 232
– case study 233–234
space analysis 67
space closure 56–57, 56
– case studies 205–208
space creation 98
– alignment 98–122
– arch expansion 135–142
– distalization 124–134
– options 98
– tooth extraction 142–148
– see also stripping (enamel reduc-tion)
Space-Jet 32, 206, 207
– spaced dentition 226–229, 226, 229
– case study 227–228
– see also congenitally missing teeth
Speed bracket 4, 4, 43, 43, 48, 57
spikes 183, 183, 223, 223
– staff requirements 60
step-up bends 180

R
Radiographic Pin 201
rapid palatal expansion (RPE) 122, 135, 136, 137
– case studies 67, 138–142, 156–157, 158
– see also arch expansion
recontouring of incisal edges 197, 197
– case study 198, 198
relapse 215
– influencing factors 215–217
– active tooth movement 215
– age 215
– functional parameters of the orovestibular system 215
– tooth morphology 216–217
– management 230–231
– individual set-up for vacuum-formed aligners 231
– interproximal enamel reduction (stripping) 230, 230–231
– see also retention
remineralization 73
reps 53–54, 53, 54
retention 57, 215
– class II cases 222
– class III cases 222
– crowding treatment 224
– deep bite treatment 223
– open bite treatment 223, 223
– oral hygiene 81, 81
– protocol 217
– rapid short treatments 111
– rotation treatment 224
– standard retainers 217
– case studies 218–221
– therapeutic monitoring 217, 217
– transverse corrections 222

stops 110, 114, 178, 203
- composite 178, 179
- crimpable 178, 179
- occlusal 105
stripping (enamel reduction) 195–196
- advantages and disadvantages 195
- guidelines 195–196, 196–197
- indications 195
- instrumentation 196, 196
- relapse management 230, 230–231
superelasticity 28
supernumerary molar 169, 170
supracrestal fibers 215
surgical arch expansion 102, 104

T
temporomandibular joint disorder 150, 186
tension-induced martensite (TIM) 28
therapeutic monitoring 217, 217
thermoactive adhesives 94
three-dimensional reconstruction 62–65, 63, 64
Time brackets 5, 5
- Time 2 44, 44, 48
- – positioning 91
- Time 3 45, 45, 48
tipping 99
- distalization and 133
- occlusal plane 112
Tomas X-marker 201
tongue interposition 117, 183
tongue thrust 101, 183, 209, 216, 223
tooth extraction see extraction tooth morphology
- retention and 216–217, 216
- size discrepancies 216–217
- surface morphology 10–11, 11, 12
tooth movement 98–99
- force levels required 98, 99
- relapse and 215
- time required 98–99, 99
torque 18, 19, 19
- errors due to bracket positioning 21, 21
- errors due to tooth morphological variation 21, 21
- loss (slop) 19–21, 19, 20
transfer trays 94, 94
transpalatal arch 146, 209, 209
- see also Frog appliance treatment 50
- intervals between adjustments 59
- phases 98
- staff requirements 60
- treatment planning case study 65–71
treatment time 55–58
- active treatment 55–57
- – leveling and alignment phase 55–56, 55, 56
- – retention phase 57
- – space closure and finishing 56–57, 56, 57
- chairside time 50–54, 50
Triad VLC Gel 185
twin-block appliance 154–155
TwinLock bracket 5, 5
two-foil tray technique 94, 95

U
ultrasonic scaler 79, 79
ultrasound cleaning 52, 52
uprighting spring 32, 192, 202, 211

V
vacuum-formed retainers 112, 169, 170, 231
- individual set-up 231
- see also retention vacuum-formed transfer trays 94, 95
Van der Linden retainer 219
veneers, bonding to 86, 86, 87
Vision LP bracket 6, 6, 46, 46, 48

W
wax markers 180, 181
Weingart pliers 232
Williams appliance 152, 152
- case study 153–155